Rotating convection-driven dynamos at low Ekman number.

作者: Jon Rotvig , Chris A. Jones

DOI: 10.1103/PHYSREVE.66.056308

关键词:

摘要: We present a fully 3D self-consistent convection-driven dynamo model with reference to the geodynamo. A relatively low Ekman number regime is reached, aim of investigating dynamical behavior at viscosity. This computationally very demanding, which has prompted us adopt plane layer an inclined rotation vector, and make use efficiently parallelized code. No hyperdiffusion used, all diffusive operators are in classical form. Our infinite Prandtl number, Rayleigh that scales as ${E}^{\ensuremath{-}1/3}$ $(E$ being number), constant Roberts number. The optimized allows study dynamos numbers range $[{10}^{\ensuremath{-}5}{,10}^{\ensuremath{-}4}].$ In this we find strong-field where induced magnetic fields satisfy Taylor's constraint good accuracy. solutions characterized by (i) MAC balance within bulk, i.e., Coriolis, pressure, Lorentz, buoyancy forces comparable magnitude, while viscous only significant thin boundary layers, (ii) Elsasser $O(10),$ (iii) strong cannot prevent small-scale structures from becoming dominant over large-scale components, (iv) Taylor-Proudman effect detectable, (v) Taylorization decreases lowered, (vi) ageostrophic velocity component makes up $80%$ flow.

参考文章(16)
Harvey P. Greenspan, The Theory of Rotating Fluids ,(1968)
P. C. Matthews, A. M. Rucklidge, M. R. E. Proctor, Solar and planetary dynamos Solar and Planetary Dynamos. ,(1993)
D. Jault, P. Cardin, On dynamic geodynamo models with imposed velocity as energy source Physics of the Earth and Planetary Interiors. ,vol. 111, pp. 75- 81 ,(1999) , 10.1016/S0031-9201(98)00147-2
A. P. Anufriev, I. Cupal, P. Hejda, The weak taylor state in an αω-dynamo Geophysical and Astrophysical Fluid Dynamics. ,vol. 79, pp. 125- 145 ,(1995) , 10.1080/03091929508228994
U. Christensen, P. Olson, G. A. Glatzmaier, Numerical modelling of the geodynamo: a systematic parameter study Geophysical Journal International. ,vol. 138, pp. 393- 409 ,(1999) , 10.1046/J.1365-246X.1999.00886.X
Gary A. Glatzmaier, Paul H. Roberts, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle Physics of the Earth and Planetary Interiors. ,vol. 91, pp. 63- 75 ,(1995) , 10.1016/0031-9201(95)03049-3
K. Zhang, C. A. Jones, The effect of hyperviscosity on geodynamo models Geophysical Research Letters. ,vol. 24, pp. 2869- 2872 ,(1997) , 10.1029/97GL02955
G. R. Sarson, C. A. Jones, A. W. Longbottom, Convection driven geodynamo models of varying Ekman number Geophysical and Astrophysical Fluid Dynamics. ,vol. 88, pp. 225- 259 ,(1998) , 10.1080/03091929808245475
CHRIS A. JONES, PAUL H. ROBERTS, Convection-driven dynamos in a rotating plane layer Journal of Fluid Mechanics. ,vol. 404, pp. 311- 343 ,(2000) , 10.1017/S0022112099007363
P. C. Matthews, Dynamo action in simple convective flows Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 455, pp. 1829- 1840 ,(1999) , 10.1098/RSPA.1999.0382