Petrov-Galerkin Crank-Nicolson Scheme for Parabolic Optimal Control Problems on Nonsmooth Domains

作者: Thomas G. Flaig , Dominik Meidner , Boris Vexler

DOI: 10.1007/978-3-319-05083-6_26

关键词:

摘要: In this paper we transfer the a priori error analysis for discretization of parabolic optimal control problems on domains allowing H 2 regularity (i.e. either with smooth boundary or polygonal and convex) to large class nonsmooth domains. We show that combination two ingredients convergence rates respect spatial temporal is required. First need time scheme which has desired rate in case. Secondly method treat singularities due non-smoothness domain corresponding elliptic state equation. particular demonstrate philosophy Crank-Nicolson finite elements suitably graded meshes discretization. A numerical example illustrates predicted rates.

参考文章(27)
Alois Kutner, Anna-Margarete Sändig, Some applications of weighted Sobolev spaces Teubner. ,(1987) , 10.1007/978-3-663-11385-0
Thomas Apel, Gunter Winkler, Optimal control under reduced regularity Applied Numerical Mathematics. ,vol. 59, pp. 2050- 2064 ,(2009) , 10.1016/J.APNUM.2008.12.003
M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case Computational Optimization and Applications. ,vol. 30, pp. 45- 61 ,(2005) , 10.1007/S10589-005-4559-5
L.A. Oganesyan, L.A. Rukhovets, Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary USSR Computational Mathematics and Mathematical Physics. ,vol. 8, pp. 129- 152 ,(1968) , 10.1016/0041-5553(68)90008-6
F. Schieweck, A-stable discontinuous Galerkin–Petrov time discretization of higher order Journal of Numerical Mathematics. ,vol. 18, pp. 25- 57 ,(2010) , 10.1515/JNUM.2010.002
Thomas Apel, Arnd Rösch, Dieter Sirch, $L^\infty$-Error Estimates on Graded Meshes with Application to Optimal Control Siam Journal on Control and Optimization. ,vol. 48, pp. 1771- 1796 ,(2009) , 10.1137/080731724
Wei Gong, Michael Hinze, Error estimates for parabolic optimal control problems with control and state constraints Computational Optimization and Applications. ,vol. 56, pp. 131- 151 ,(2013) , 10.1007/S10589-013-9541-Z