Spectral–Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images

作者: Hongyan Zhang , Han Zhai , Liangpei Zhang , Pingxiang Li

DOI: 10.1109/TGRS.2016.2524557

关键词:

摘要: Clustering for hyperspectral images (HSIs) is a very challenging task due to its inherent complexity. In this paper, we propose a novel spectral-spatial sparse subspace clustering S …

参考文章(50)
Geoffrey H. Ball, David J. Hall, ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION Stanford Research Institute. ,(1965)
Mário A. T. Figueiredo, Xiangrong Zeng, A novel sparsity and clustering regularization arXiv: Learning. ,(2013)
Wei He, Hongyan Zhang, Liangpei Zhang, Huanfeng Shen, Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration IEEE Transactions on Geoscience and Remote Sensing. ,vol. 54, pp. 178- 188 ,(2016) , 10.1109/TGRS.2015.2452812
E. Elhamifar, G. Sapiro, R. Vidal, See all by looking at a few: Sparse modeling for finding representative objects computer vision and pattern recognition. pp. 1600- 1607 ,(2012) , 10.1109/CVPR.2012.6247852
Singh Vijendra, None, Efficient Clustering for High Dimensional Data: Subspace Based Clustering and Density Based Clustering Information Technology Journal. ,vol. 10, pp. 1092- 1105 ,(2011) , 10.3923/ITJ.2011.1092.1105
Joao FC Mota, Joao MF Xavier, Pedro MQ Aguiar, Markus Püschel, None, D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization IEEE Transactions on Signal Processing. ,vol. 61, pp. 2718- 2723 ,(2013) , 10.1109/TSP.2013.2254478
Wei He, Hongyan Zhang, Liangpei Zhang, Huanfeng Shen, Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. ,vol. 8, pp. 3050- 3061 ,(2015) , 10.1109/JSTARS.2015.2398433
Yanfei Zhong, Ailong Ma, Liangpei Zhang, An Adaptive Memetic Fuzzy Clustering Algorithm With Spatial Information for Remote Sensing Imagery IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. ,vol. 7, pp. 1235- 1248 ,(2014) , 10.1109/JSTARS.2014.2303634
E. Elhamifar, R. Vidal, Sparse Subspace Clustering: Algorithm, Theory, and Applications IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 35, pp. 2765- 2781 ,(2013) , 10.1109/TPAMI.2013.57