Adversarial Learning for Neural Dialogue Generation

作者: Jiwei Li , Will Monroe , Tianlin Shi , Sėbastien Jean , Alan Ritter

DOI: 10.18653/V1/D17-1230

关键词:

摘要: … for response generation. We cast the model in the framework of reinforcement learning and … The adversarial training model should theoretically benefit a variety of generation tasks in …

参考文章(45)
Colin Cherry, William B. Dolan, Alan Ritter, Data-Driven Response Generation in Social Media empirical methods in natural language processing. pp. 583- 593 ,(2011)
Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, Bill Dolan, A Neural Network Approach to Context-Sensitive Generation of Conversational Responses north american chapter of the association for computational linguistics. pp. 196- 205 ,(2015) , 10.3115/V1/N15-1020
Quoc V. Le, Oriol Vinyals, A Neural Conversational Model arXiv: Computation and Language. ,(2015)
Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Attention with Intention for a Neural Network Conversation Model. arXiv: Neural and Evolutionary Computing. ,(2015)
Thang Luong, Hieu Pham, Christopher D. Manning, Effective Approaches to Attention-based Neural Machine Translation empirical methods in natural language processing. pp. 1412- 1421 ,(2015) , 10.18653/V1/D15-1166
Peter W. Glynn, Likelihood ratio gradient estimation for stochastic systems Communications of the ACM. ,vol. 33, pp. 75- 84 ,(1990) , 10.1145/84537.84552
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735
, Generative Adversarial Nets neural information processing systems. ,vol. 27, pp. 2672- 2680 ,(2014) , 10.3156/JSOFT.29.5_177_2
Jiwei Li, Thang Luong, Dan Jurafsky, A Hierarchical Neural Autoencoder for Paragraphs and Documents Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). ,vol. 1, pp. 1106- 1115 ,(2015) , 10.3115/V1/P15-1107