A general construction of barycentric coordinates over convex polygons

作者: Michael S. Floater , Kai Hormann , Géza Kós

DOI: 10.1007/S10444-004-7611-6

关键词:

摘要: … Notation for convex polygons. nates to convex polygons and this is the topic of this paper. Let be a convex polygon in the plane, regarded as a closed set, with vertices v1,v2,...,vn, n ⩾ 3, …

参考文章(15)
Ulrich Pinkall, Konrad Polthier, Computing Discrete Minimal Surfaces and Their Conjugates Experimental Mathematics. ,vol. 2, pp. 15- 36 ,(1993) , 10.1080/10586458.1993.10504266
Charles T. Loop, Tony D. DeRose, A multisided generalization of Bézier surfaces ACM Transactions on Graphics. ,vol. 8, pp. 204- 234 ,(1989) , 10.1145/77055.77059
Peter Charrot, John A. Gregory, A pentagonal surface patch for computer aided geometric design Computer Aided Geometric Design. ,vol. 1, pp. 87- 94 ,(1984) , 10.1016/0167-8396(84)90006-2
Joe Warren, Barycentric Coordinates for Convex Polytopes Advances in Computational Mathematics. ,vol. 6, pp. 97- 108 ,(1996) , 10.1007/BF02127699
Michael S. Floater, Mean value coordinates Computer Aided Geometric Design. ,vol. 20, pp. 19- 27 ,(2003) , 10.1016/S0167-8396(02)00002-5
Murray H. Protter, Hans F. Weinberger, Maximum principles in differential equations ,(1967)
J. M. Carnicer, M. S. Floater, Piecewise linear interpolants to Lagrange and Hermite convex scattered data Numerical Algorithms. ,vol. 13, pp. 345- 364 ,(1996) , 10.1007/BF02207700
Michael S. Floater, One-to-one piecewise linear mappings over triangulations Mathematics of Computation. ,vol. 72, pp. 685- 696 ,(2003) , 10.1090/S0025-5718-02-01466-7
Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, Werner Stuetzle, Multiresolution analysis of arbitrary meshes international conference on computer graphics and interactive techniques. pp. 173- 182 ,(1995) , 10.1145/218380.218440