Quantum Cohomology and Morse Theory on the Loop Space of Toric Varieties

作者: Yiannis Vlassopoulos

DOI:

关键词:

摘要: On a symplectic manifold $M$, the quantum product defines complex, one parameter family of flat connections called A-model or Dubrovin connections. Let $\hbar$ denote parameter. Associated to them is $\mathcal{D}$ - module ${\mathcal{D}}/I$ over Heisenberg algebra first order differential operators on complex torus. An element $I$ gives relation in cohomology $M$ by taking limit as $\hbar\to 0$. Givental (HomGeom), discovered that there should be structure (as yet not rigorously defined) ${S^1}$ equivariant Floer loop space and conjectured two modules equal. Based that, we formulate conjecture about how compute terms Morse theoretic data for action functional. The proven case toric manifolds with $\int_d{c_1}> 0$ all nonzero classes $d$ rational curves $M$.

参考文章(14)
William Fulton, Introduction to Toric Varieties. ,(1993)
David R. Morrison, Mathematical Aspects of Mirror Symmetry arXiv: Algebraic Geometry. ,(1996)
Nicole Berline, Mich�le Vergne, Zeros d’un champ de vecteurs et classes caracteristiques equivariantes Duke Mathematical Journal. ,vol. 50, pp. 539- 549 ,(1983) , 10.1215/S0012-7094-83-05024-X
Gang Liu, Gang Tian, Floer homology and Arnold conjecture Journal of Differential Geometry. ,vol. 49, pp. 1- 74 ,(1998) , 10.4310/JDG/1214460936
A. B. Givental, Homological geometry I. Projective hypersurfaces Selecta Mathematica. ,vol. 1, pp. 325- 345 ,(1995) , 10.1007/BF01671568
Ezra Getzler, John D.S. Jones, Scott Petrack, Differential forms on loop spaces and the cyclic bar complex Topology. ,vol. 30, pp. 339- 371 ,(1991) , 10.1016/0040-9383(91)90019-Z
Yongbin Ruan, Gang Tian, Bott-type symplectic Floer cohomology and its multiplication structures Mathematical Research Letters. ,vol. 2, pp. 203- 219 ,(1995) , 10.4310/MRL.1995.V2.N2.A9
J. D. S. Jones, S. B. Petrack, The fixed point theorem in equivariant cohomology Transactions of the American Mathematical Society. ,vol. 322, pp. 35- 49 ,(1990) , 10.1090/S0002-9947-1990-1010411-X
Raoul Bott, Lectures on Morse theory, old and new Bulletin of the American Mathematical Society. ,vol. 7, pp. 331- 358 ,(1982) , 10.1090/S0273-0979-1982-15038-8