Robust regression computation computation using iteratively reweighted least squares

作者: Dianne P. O’Leary

DOI: 10.1137/0611032

关键词:

摘要: Several variants of Newton’s method are used to obtain estimates solution vectors and residual for the linear model $Ax = b + e b_{true} $ using an iteratively reweighted least squares criterion, which tends diminish influence outliers compared with standard criterion. Algorithms appropriate dense sparse matrices presented. Solving system updated matrix factorizations or (unpreconditioned) conjugate gradient iteration gives most effective algorithms. Four weighting functions compared, results given well-conditioned ill-conditioned problems.

参考文章(12)
Y. T. Chen, R. P. Tewarson, On the fill-in when sparse vectors are orthonormalized Computing. ,vol. 9, pp. 53- 56 ,(1972) , 10.1007/BF02236376
David F. Shanno, David M. Rocke, Numerical Methods for Robust Regression: Linear Models SIAM Journal on Scientific and Statistical Computing. ,vol. 7, pp. 86- 97 ,(1986) , 10.1137/0907006
Ron S. Dembo, Trond Steihaug, Truncated-newtono algorithms for large-scale unconstrained optimization Mathematical Programming. ,vol. 26, pp. 190- 212 ,(1983) , 10.1007/BF02592055
Melvin J. Hinich, Prem P. Talwar, A Simple Method for Robust Regression Journal of the American Statistical Association. ,vol. 70, pp. 113- 119 ,(1975) , 10.1080/01621459.1975.10480271
David Coleman, Paul Holland, Neil Kaden, Virginia Klema, Stephen C. Peters, A System of Subroutines for Iteratively Reweighted Least Squares Computations ACM Transactions on Mathematical Software. ,vol. 6, pp. 327- 336 ,(1980) , 10.1145/355900.355905
John A Scales, Adam Gersztenkorn, Sven Treitel, Fast l p solution of large, sparse, linear systems: application to seismic travel time tomography Journal of Computational Physics. ,vol. 75, pp. 314- 333 ,(1988) , 10.1016/0021-9991(88)90115-5
Paul W. Holland, Roy E. Welsch, Robust regression using iteratively reweighted least-squares Communications in Statistics-theory and Methods. ,vol. 6, pp. 813- 827 ,(1977) , 10.1080/03610927708827533
Håkan Ekblom, A new algorithm for the huber estimator in linear models BIT. ,vol. 28, pp. 123- 132 ,(1988) , 10.1007/BF01934700
D. I. Clark, M. R. Osborne, Finite Algorithms for Huber’sM-Estimator SIAM Journal on Scientific and Statistical Computing. ,vol. 7, pp. 72- 85 ,(1986) , 10.1137/0907005