Methods for Numerical Flow Simulation

作者: Rolf Rannacher

DOI: 10.1007/978-3-7643-7806-6_4

关键词:

摘要: This chapter introduces into computational methods for the simulation of PDE-based models laminar hemodynamical flows. We discuss space and time discretization with emphasis on operator-splitting finite-element Galerkin because their flexibility rigorous mathematical basis. Special attention is paid to pipe flow related question artificial outflow boundary conditions. Further topics are efficient solution resulting algebraic problems, techniques sensitivity-based error control mesh adaptation, as well model calibration. concentrate flows in which all relevant spatial temporal scales can be resolved no additional modeling turbulence effects required. covers most situations The numerical corresponding systems complicated mainly incompressibility constraint enforces use implicit its essentially parabolic or elliptic character requires prescription conditions along whole domain.

参考文章(75)
R. Becker, M. Braack, D. Meidner, R. Rannacher, B. Vexler, Adaptive Finite Element Methods for PDE-Constrained Optimal Control Problems Reactive Flows, Diffusion and Transport. pp. 177- 205 ,(2007) , 10.1007/978-3-540-28396-6_8
Sebastian Bönisch, Thomas Dunne, Rolf Rannacher, Numerics of Fluid-Structure Interaction Birkhäuser Basel. pp. 333- 378 ,(2008) , 10.1007/978-3-7643-7806-6_5
Th. Dunne, R. Becker, VisuSimple: An Interactive Visualization Utility for Scientific Computing Reactive Flows, Diffusion and Transport. pp. 635- 651 ,(2007) , 10.1007/978-3-540-28396-6_25
Kyōto Daigaku. Sūgakuka, Lectures in mathematics Kinokuniya Book-Store Co., Ltd. ,(1968)
Erwin Stein, Thomas J.R. Hughes, de R. Borst, Encyclopedia of computational mechanics Wiley. ,(2004)
Karkenahalli Srinivas, Clive A. J. Fletcher, Incompressible Viscous Flow Springer, Berlin, Heidelberg. pp. 227- 239 ,(1991) , 10.1007/978-3-642-58108-3_16
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)