On the Optimal Mean Photon Number for Quantum Cryptography

作者: Chip Elliott , David Pearson

DOI:

关键词:

摘要: The optimal mean photon number (mu) for quantum cryptography is the average per transmitted pulse that results in highest delivery rate of distilled cryptographic key bits, given a specific system scenario and set assumptions about Eve's capabilities. Although many experimental systems have employed 0.1 practice, several research teams pointed out this value somewhat arbitrary. In fact, various values mu been described literature. In paper we offer detailed analytic model an experimental, fiber-based system, explicit reasonable current technical We explicitly total behavior ranging from physical effects to protocols such as error correction privacy amplification. then derive range scenarios. One interesting result approximately 1.1 wide realistic, QKD systems; it provides nearly 10 times throughput employ more conventional = 0.1, without any adverse affect on security, judged against

参考文章(16)
R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. Simmons, Quantum Cryptography over Underground Optical Fibers international cryptology conference. pp. 329- 342 ,(1996) , 10.1007/3-540-68697-5_25
G. Gilbert, M. Hamrick, Practical Quantum Cryptography: A Comprehensive Analysis (Part One) arXiv: Quantum Physics. ,(2000)
Boris Slutsky, Ramesh Rao, Pan-Cheng Sun, Ljubiša Tancevski, Shaya Fainman, Defense frontier analysis of quantum cryptographic systems. Applied Optics. ,vol. 37, pp. 2869- 2878 ,(1998) , 10.1364/AO.37.002869
Charles H. Bennett, François Bessette, Gilles Brassard, Louis Salvail, John Smolin, Experimental quantum cryptography theory and application of cryptographic techniques. ,vol. 5, pp. 253- 265 ,(1991) , 10.1007/3-540-46877-3_23
Marcos Curty, Norbert Lütkenhaus, Effect of finite detector efficiencies on the security evaluation of quantum key distribution Physical Review A. ,vol. 69, pp. 042321- ,(2004) , 10.1103/PHYSREVA.69.042321
Chip Elliott, Building the quantum network New Journal of Physics. ,vol. 4, pp. 46- 46 ,(2002) , 10.1088/1367-2630/4/1/346
W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, Daylight quantum key distribution over 1.6 km Physical Review Letters. ,vol. 84, pp. 5652- 5655 ,(2000) , 10.1103/PHYSREVLETT.84.5652
John M. Myers, Tai T. Wu, David S. Pearson, Entropy estimates for individual attacks on the BB84 protocol for quantum key distribution Quantum information and computation. Conference. ,vol. 5436, pp. 36- 47 ,(2004) , 10.1117/12.542534
Donald S Bethune, William P Risk, Autocompensating quantum cryptography New Journal of Physics. ,vol. 4, pp. 42- 42 ,(2002) , 10.1088/1367-2630/4/1/342
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, Roman Sobolewski, Picosecond superconducting single-photon optical detector Applied Physics Letters. ,vol. 79, pp. 705- 707 ,(2001) , 10.1063/1.1388868