Convergence of genetic evolution algorithms for optimization

作者: JUN HE , LI-SHAN KANG , YONG-JUN CHEN

DOI: 10.1080/10637199508915474

关键词:

摘要: Genetic algorithms are highly parallel, adaptive search method based on the processes of Darwinian evolution. This paper combines genetic with simulated annealing to a new kind random which is called evolution algorithms. We give some conditions guarantee converge global optima set probability 1 for solving optimization problems and analyze convergence by using Markov chain theory.

参考文章(13)
David E. Goldberg, Philip Segrest, Finite Markov chain analysis of genetic algorithms international conference on genetic algorithms. pp. 1- 8 ,(1987)
Xin Yao, Guojie Li, General simulated annealing Journal of Computer Science and Technology. ,vol. 6, pp. 329- 338 ,(1991) , 10.1007/BF02948392
S. Anily, A. Federgruen, SIMULATED ANNEALING METHODS WITH GENERAL ACCEPTANCE PROBABILITIES Journal of Applied Probability. ,vol. 24, pp. 657- 667 ,(1987) , 10.2307/3214097
H. Mühlenbein, M. Schomisch, J. Born, Paper: The parallel genetic algorithm as function optimizer parallel computing. ,vol. 17, pp. 619- 632 ,(1991) , 10.1016/S0167-8191(05)80052-3
M. Lundy, A. Mees, Convergence of an annealing algorithm Mathematical Programming. ,vol. 34, pp. 111- 124 ,(1986) , 10.1007/BF01582166
H. Mühlenbein, M. Gorges-Schleuter, O. Krämer, Evolution algorithms in combinatorial optimization parallel computing. ,vol. 7, pp. 65- 85 ,(1988) , 10.1016/0167-8191(88)90098-1
Shoshana Anily, Awi Federgruen, Ergodicity in parametric nonstationary Markov chains: an application to simulated annealing methods Operations Research. ,vol. 35, pp. 867- 874 ,(1987) , 10.1287/OPRE.35.6.867
Basilis Gidas, Nonstationary Markov Chains and Convergence of the Annealing Algorithm Journal of Statistical Physics. ,vol. 39, pp. 73- 131 ,(1985) , 10.1007/BF01007975
John H. Holland, Genetic Algorithms and the Optimal Allocation of Trials SIAM Journal on Computing. ,vol. 2, pp. 88- 105 ,(1973) , 10.1137/0202009
Lawrence. Davis, Handbook of Genetic Algorithms ,(1991)