Confidence bands from censored samples

作者: Sándor Csörgő , Lajos Horváth

DOI: 10.2307/3314659

关键词:

摘要: Several types of asymptotic confidence bands have been proposed in the literature when data are randomly censored on right. Introducing new classes bands, we place old and their relationship to one another within a comprehensive theory bands. A thorough analysis yields narrower two kinds modifications which asymptotically distribution- censorfree. One these is useful interval constructed predetermined width random; other, there bound random. We illustrate our Szeged pacemaker data. These methods also provide general modification Kolmogorov band uncensored case.

参考文章(17)
B. Efron, The two sample problem with censored data Proc. Fifth Berkely Symp. Math. Statist. Prob.. ,vol. 4, pp. 831- 853 ,(1967)
M Csörgö, P Revesz, None, Strong approximations in probability and statistics ,(1981)
SÁNDOR CSÖRGÓ, LAJOS HORVÁTH, On the Koziol-Green model for random censorship Biometrika. ,vol. 68, pp. 391- 401 ,(1981) , 10.1093/BIOMET/68.2.391
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Springer Series in Statistics. ,vol. 53, pp. 319- 337 ,(1992) , 10.1007/978-1-4612-4380-9_25
T. W. Anderson, A MODIFICATION OF THE SEQUENTIAL PROBABILITY RATIO TEST TO REDUCE THE SAMPLE SIZE Annals of Mathematical Statistics. ,vol. 31, pp. 165- 197 ,(1960) , 10.1214/AOMS/1177705996
W. J. HALL, JON A. WELLNER, Confidence bands for a survival curve from censored data Biometrika. ,vol. 67, pp. 133- 143 ,(1980) , 10.1093/BIOMET/67.1.133
Jon A. Wellner, Limit theorems for the ratio of the empirical distribution function to the true distribution function Probability Theory and Related Fields. ,vol. 45, pp. 73- 88 ,(1978) , 10.1007/BF00635964
Mary Jo Gillespie, Lloyd Fisher, CONFIDENCE BANDS FOR THE KAPLAN-MEIER SURVIVAL CURVE ESTIMATE Annals of Statistics. ,vol. 7, pp. 920- 924 ,(1979) , 10.1214/AOS/1176344742
Emad-Eldin A.A Aly, Miklós Csörgő, Lajos Horváth, Strong Approximations of the Quantile Process of the Product-Limit Estimator Journal of Multivariate Analysis. ,vol. 16, pp. 185- 210 ,(1985) , 10.1016/0047-259X(85)90033-8