Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis

作者: Hossein Moayedi , Abdolreza Osouli , Dieu Tien Bui , Loke Kok Foong , Hoang Nguyen

DOI: 10.1080/19475705.2019.1699608

关键词:

摘要: Due to the wide application of evolutionary science in different engineering problems, main aim this paper is present two novel optimizations multi-layer perceptron (MLP) neural networ...

参考文章(83)
D. M. Cruden, A simple definition of a landslide Bulletin of the International Association of Engineering Geology. ,vol. 43, pp. 27- 29 ,(1991) , 10.1007/BF02590167
D. H. Radbruch-Hall, D. J. Varnes, Landslides — Cause and effect Bulletin of the International Association of Engineering Geology. ,vol. 13, pp. 205- 216 ,(1976) , 10.1007/BF02634797
Zieaoddin Shoaei, Jafar Ghayoumian, The Largest Debris Flow in the World, Seimareh Landslide, Western Iran Environmental forest science. Proceedings of the IUFRO Division 8 Conference, Kyoto University, Japan, 19-23 October 1998.. pp. 553- 561 ,(1998) , 10.1007/978-94-011-5324-9_57
James P. Egan, Signal detection theory and ROC analysis Academic Press. ,(1975)
D J Varnes, Slope movement types and processes Transportation Research Board Special Report. pp. 11- 33 ,(1978)
Omid Rahmati, Aliakbar Nazari Samani, Mohamad Mahdavi, Hamid Reza Pourghasemi, Hossein Zeinivand, Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS Arabian Journal of Geosciences. ,vol. 8, pp. 7059- 7071 ,(2015) , 10.1007/S12517-014-1668-4
Aniruddha Bhattacharya, P.K. Chattopadhyay, Solving complex economic load dispatch problems using biogeography-based optimization Expert Systems With Applications. ,vol. 37, pp. 3605- 3615 ,(2010) , 10.1016/J.ESWA.2009.10.031
HamidReza Pourghasemi, Biswajeet Pradhan, Candan Gokceoglu, Kimia Deylami Moezzi, A comparative assessment of prediction capabilities of Dempster–Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS Geomatics, Natural Hazards and Risk. ,vol. 4, pp. 93- 118 ,(2013) , 10.1080/19475705.2012.662915