Ironic Complicity: Satisfiability Algorithms and Circuit Lower Bounds

作者: Rahul Santhanam

DOI:

关键词:

摘要: I discuss recent progress in developing and exploiting connections between SAT algorithms circuit lower bounds. The centrepiece of the article is Williams’ proof that NEXP \not\subseteq ACC^0, which proceeds via a new algorithm for ACC^0-SAT beating brute-force search. His result exploits formal connection from non-trivial SAT to also various the reverse direction, have led to improved k-SAT, Formula-SAT AC^0-SAT, among other problems.

参考文章(34)
Lance Fortnow, Rahul Santhanam, Robust simulations and significant separations international colloquium on automata languages and programming. pp. 569- 580 ,(2011) , 10.1007/978-3-642-22006-7_48
Evgeny Dantsin, Edward A. Hirsch, Worst-Case Upper Bounds Handbook of Satisfiability. pp. 403- 424 ,(2009)
R. Paturi, P. Pudlak, F. Zane, Satisfiability Coding Lemma foundations of computer science. pp. 566- 574 ,(1997) , 10.1109/SFCS.1997.646146
Rahul Santhanam, Fighting Perebor: New and Improved Algorithms for Formula and QBF Satisfiability 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. pp. 183- 192 ,(2010) , 10.1109/FOCS.2010.25
Theodore Baker, John Gill, Robert Solovay, Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question SIAM Journal on Computing. ,vol. 4, pp. 431- 442 ,(1975) , 10.1137/0204037
Russell Impagliazzo, Ramamohan Paturi, Francis Zane, Which Problems Have Strongly Exponential Complexity Journal of Computer and System Sciences. ,vol. 63, pp. 512- 530 ,(2001) , 10.1006/JCSS.2001.1774
Joel I. Seiferas, Michael J. Fischer, Albert R. Meyer, Separating Nondeterministic Time Complexity Classes Journal of the ACM. ,vol. 25, pp. 146- 167 ,(1978) , 10.1145/322047.322061
Noam Nisan, Avi Wigderson, Hardness vs randomness Journal of Computer and System Sciences. ,vol. 49, pp. 149- 167 ,(1994) , 10.1016/S0022-0000(05)80043-1
F. C. Hennie, R. E. Stearns, Two-Tape Simulation of Multitape Turing Machines Journal of the ACM. ,vol. 13, pp. 533- 546 ,(1966) , 10.1145/321356.321362
Johan HÅ stad, The Shrinkage Exponent of de Morgan Formulas is 2 SIAM Journal on Computing. ,vol. 27, pp. 48- 64 ,(1998) , 10.1137/S0097539794261556