Topologically protected qubits from a possible non-Abelian fractional quantum Hall state.

作者: Sankar Das Sarma , Michael Freedman , Chetan Nayak

DOI: 10.1103/PHYSREVLETT.94.166802

关键词:

摘要: The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at a Landau-level filling fraction $\ensuremath{\nu}=5/2$. This particularly intriguing because this has unusual topological properties, including quasiparticle excitations with non-Abelian braiding statistics. In order to determine nature of $\ensuremath{\nu}=5/2$ state, one must measure Here, we propose experiment which can simultaneously statistics and, if they prove be non-Abelian, produce topologically protected qubit on logical Not operation performed by braiding. Using measured excitation gap $\ensuremath{\nu}=5/2$, estimate error rate ${10}^{\ensuremath{-}30}$ or lower.

参考文章(30)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Daniel Gottesman, Theory of fault-tolerant quantum computation Physical Review A. ,vol. 57, pp. 127- 137 ,(1998) , 10.1103/PHYSREVA.57.127
J. M. Leinaas, J. Myrheim, On the theory of identical particles Il Nuovo Cimento B. ,vol. 37, pp. 1- 23 ,(1977) , 10.1007/BF02727953
G. A. Goldin, R. Menikoff, D. H. Sharp, Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect Journal of Mathematical Physics. ,vol. 22, pp. 1664- 1668 ,(1981) , 10.1063/1.525110
Frank Wilczek, Magnetic Flux, Angular Momentum, and Statistics Physical Review Letters. ,vol. 48, pp. 1144- 1146 ,(1982) , 10.1103/PHYSREVLETT.48.1144
X. G. WEN, Topological Orders in Rigid States International Journal of Modern Physics B. ,vol. 4, pp. 239- 271 ,(1990) , 10.1142/S0217979290000139
Michael H. Freedman, Michael Larsen, Zhenghan Wang, A Modular Functor Which is Universal for Quantum Computation Communications in Mathematical Physics. ,vol. 227, pp. 605- 622 ,(2002) , 10.1007/S002200200645