Simplified Bodywave Source Terms with One Application in Moment Tensor Recovery

作者: Steven N. Ward

DOI: 10.1007/978-94-009-8531-5_10

关键词:

摘要: It is well known that the elastic equations of motion in spherically symmetric, inhomogeneous media can be transformed into $$\frac{\partial }{{\partial r}}\underline \nu _\ell ^m \left( {r,w} \right) = \underline{\underline m} \right)\underline + \underline F \right)$$ (1) which formally solved using propagator matrices \(\Lambda\) $$\underline {\underline r ,\omega } \sum\limits_{\ell ,m} {\underline{\underline \Lambda ,r',\omega {r',\omega \int_{r'}^r ,\bar r,\omega {\bar \right)d\bar r$$ (2) The \(\underline ,\) course, are traction-displacement vectors and \(\sum\limits_{\ell { 0}^\infty {\sum\limits_{m - \ell }^\ell . \) Any scheme for recovery seismic moment tensor requires calculation absolute scale synthetic seismograms.

参考文章(4)
F. Gilbert, Excitation of the Normal Modes of the Earth by Earthquake Sources Geophysical Journal International. ,vol. 22, pp. 223- 226 ,(1971) , 10.1111/J.1365-246X.1971.TB03593.X
S. N. Ward, On elastic wave calculations in a sphere using moment tensor sources Geophysical Journal International. ,vol. 66, pp. 23- 30 ,(1981) , 10.1111/J.1365-246X.1981.TB05945.X
C. H. Chapman, J. H. Woodhouse, Symmetry of the wave equation and excitation of body waves Geophysical Journal International. ,vol. 65, pp. 777- 782 ,(1981) , 10.1111/J.1365-246X.1981.TB04883.X
Steven N. Ward, A technique for the recovery of the seismic moment tensor applied to the Oaxaca, Mexico earthquake of November 1978 Bulletin of the Seismological Society of America. ,vol. 70, pp. 717- 734 ,(1980)