Support vector regression algorithms in the forecasting of daily maximums of tropospheric ozone concentration in madrid

作者: E. G. Ortiz-García , S. Salcedo-Sanz , A. M. Pérez-Bellido , J. Gascón-Moreno , A. Portilla-Figueras

DOI: 10.1007/978-3-642-13803-4_38

关键词:

摘要: In this paper we present the application of a support vector regression algorithm to real problem maximum daily tropospheric ozone forecast The approach proposed is hybridized with an heuristic for optimal selection hyper-parameters prediction carried out in all station air quality monitoring network Madrid analyze how depends on meteorological variables such as solar radiation and temperature, also perform comparison against results obtained using multi-layer perceptron neural same problem.

参考文章(14)
Alex J. Smola, Bernhard Schölkopf, A tutorial on support vector regression Statistics and Computing. ,vol. 14, pp. 199- 222 ,(2004) , 10.1023/B:STCO.0000035301.49549.88
Stanislaw Osowski, Konrad Garanty, Forecasting of the daily meteorological pollution using wavelets and support vector machine Engineering Applications of Artificial Intelligence. ,vol. 20, pp. 745- 755 ,(2007) , 10.1016/J.ENGAPPAI.2006.10.008
U. Brunelli, V. Piazza, L. Pignato, F. Sorbello, S. Vitabile, Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy Atmospheric Environment. ,vol. 41, pp. 2967- 2995 ,(2007) , 10.1016/J.ATMOSENV.2006.12.013
Bernard G.J. Massart, Olav M. Kvalheim, Ozone forecasting from meteorological variables Chemometrics and Intelligent Laboratory Systems. ,vol. 42, pp. 179- 190 ,(1998) , 10.1016/S0169-7439(98)00063-X
Emilio G. Ortiz-García, Sancho Salcedo-Sanz, Ángel M. Pérez-Bellido, Jose A. Portilla-Figueras, Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions Neurocomputing. ,vol. 72, pp. 3683- 3691 ,(2009) , 10.1016/J.NEUCOM.2009.07.009
Wenjian Wang, Changqian Men, Weizhen Lu, Online prediction model based on support vector machine Neurocomputing. ,vol. 71, pp. 550- 558 ,(2008) , 10.1016/J.NEUCOM.2007.07.020
Feng Luan, Chunxia Xue, Ruisheng Zhang, Chunyan Zhao, Mancang Liu, Zhide Hu, Botao Fan, Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine Analytica Chimica Acta. ,vol. 537, pp. 101- 110 ,(2005) , 10.1016/J.ACA.2004.12.085