Quantum lattice-gas model for the Burgers equation

作者: Jeffrey Yepez

DOI: 10.1023/A:1014514805610

关键词:

摘要: A quantum algorithm is presented for modeling the time evolution of a continuous field governed by nonlinear Burgers equation in one spatial dimension. It microscopic-scale type-II computer, large lattice small computers interconnected nearest neighbor fashion classical communication channels. formula state preparation presented. The unitary conservative gate applied to each node independently. Following operation, ensemble measurements over independent microscopic realizations are made resulting finite-difference Boltzmann at mesoscopic scale. measured values then used re-prepare and step completed. procedure preparation, application, measurement continued ad infinitum. derived as an effective theory governing behavior computer its macroscopic scale where both cell size interval become infinitesimal. numerical simulation shock formation carried out agrees with exact analytical solution.

参考文章(34)
C. David Levermore, Bruce M. Boghosian, A Cellular Automaton for Burgers' Equation. Complex Systems. ,vol. 1, ,(1987)
Brosl Hasslacher, Uriel Frisch, Yves Pomeau, Pierre Lallemand, Dominique d'Humières, Jean-Pierre Rivet, Lattice gas hydrodynamics in two and three dimensions Complex Systems. ,vol. 1, pp. 649- 707 ,(1987)
M. H. Ernst, Shankar P. Das, Thermal cellular automata fluids Journal of Statistical Physics. ,vol. 66, pp. 465- 483 ,(1992) , 10.1007/BF01060075
Andrew N. Emerton, Peter V. Coveney, Bruce M. Boghosian, Lattice-gas simulations of domain growth, saturation, and self-assembly in immiscible fluidsand microemulsions Physical Review E. ,vol. 55, pp. 708- 720 ,(1997) , 10.1103/PHYSREVE.55.708
David P. DiVincenzo, Two-bit gates are universal for quantum computation Physical Review A. ,vol. 51, pp. 1015- 1022 ,(1995) , 10.1103/PHYSREVA.51.1015
S. Succi, R. Benzi, Lattice Boltzmann equation for quantum mechanics Physica D: Nonlinear Phenomena. ,vol. 69, pp. 327- 332 ,(1993) , 10.1016/0167-2789(93)90096-J
Jeffrey Yepez, Lattice-Gas Quantum Computation International Journal of Modern Physics C. ,vol. 09, pp. 1587- 1596 ,(1998) , 10.1142/S0129183198001436
Cécile Appert, Stéphane Zaleski, Lattice gas with a liquid-gas transition Physical Review Letters. ,vol. 64, pp. 1- 4 ,(1990) , 10.1103/PHYSREVLETT.64.1
Bruce M. Boghosian, Jeffrey Yepez, Francis J. Alexander, Norman H. Margolus, Integer lattice gases Physical Review E. ,vol. 55, pp. 4137- 4147 ,(1997) , 10.1103/PHYSREVE.55.4137
David A. Meyer, From quantum cellular automata to quantum lattice gases Journal of Statistical Physics. ,vol. 85, pp. 551- 574 ,(1996) , 10.1007/BF02199356