Locating subsets of B(H) relative to seminorms inducing the strong-operator topology

作者: Bridges

DOI: 10.4115/JLA.2011.3.3

关键词:

摘要: Let H be a Hilbert space, andA an inhabited, bounded, convex subset ofB(H). We give constructive proof thatA is weak-operator totally bounded if and only it located relative to certain family of seminorms that induces the strong-operator topology onB(H).

参考文章(10)
Helmut Schwichtenberg, Program Extraction in Constructive Analysis Logicism, Intuitionism, and Formalism. pp. 255- 275 ,(2009) , 10.1007/978-1-4020-8926-8_13
Per Martin-Löf, Intuitionistic type theory Bibliopolis. ,(1984)
Hiroshi Nakano, Susumu Hayashi, PX, a computational logic ,(1988)
Hajime Ishihara, Locating subsets of a Hilbert space Proceedings of the American Mathematical Society. ,vol. 129, pp. 1385- 1390 ,(2000) , 10.1090/S0002-9939-00-05674-4
Douglas S. Bridges, Luminita Simona Vîta, Techniques of Constructive Analysis ,(2008)
Douglas Bridges, Fred Richman, Varieties of Constructive Mathematics ,(1987)
Baw Bas Spitters, Constructive results on operator algebras Journal of Universal Computer Science. ,vol. 11, pp. 2096- 2113 ,(2005)
R. L. Constable, S. F. Allen, J. F. Cremer, S. F. Smith, R. W. Harper, P. Panangaden, H. M. Bromley, D. J. Howe, W. R. Cleaveland, J. T. Sasaki, T. B. Knoblock, N. P. Mendler, Implementing Mathematics with The Nuprl Proof Development System ,(1986)