Stochastic language models for style-directed layout analysis of document images

作者: T. Kanungo , Song Mao

DOI: 10.1109/TIP.2003.811487

关键词:

摘要: Image segmentation is an important component of any document image analysis system. While many algorithms exist in the literature, very few i) allow users to specify physical style, and ii) incorporate user-specified style information into algorithm's objective function that be minimized. We describe a algorithm models document's structure as hierarchical where each node describes region using stochastic regular grammar. The exact form hierarchy language specified by user, while probabilities associated with transitions are estimated from groundtruth data. demonstrate on images bilingual dictionaries.

参考文章(25)
Jesse F Hull, Recognition of mathematics using a two-dimensional trainable context-free grammar Massachusetts Institute of Technology. ,(1996)
Lawrence Rabiner, Biing-Hwang Juang, Fundamentals of speech recognition ,(1993)
S. Mao, A. Rosenfeld, T. Kanungo, Stochastic attributed K-d tree modeling of technical paper title pages international conference on image processing. ,vol. 1, pp. 533- 536 ,(2003) , 10.1109/ICIP.2003.1247016
Jeffrey D. Ullman, Alfred V. Aho, The Theory of Parsing, Translation, and Compiling ,(1972)
T. Kanungo, Qigong Zheng, Estimation of morphological degradation model parameters international conference on acoustics, speech, and signal processing. ,vol. 3, pp. 1961- 1964 ,(2001) , 10.1109/ICASSP.2001.941331
Andreas Stolcke, An efficient probabilistic context-free parsing algorithm that computes prefix probabilities Computational Linguistics. ,vol. 21, pp. 165- 201 ,(1995)
Philip A. Chou, Gary E. Kopec, Stochastic attribute grammar model of document production and its use in document image decoding IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology. ,vol. 2422, pp. 66- 73 ,(1995) , 10.1117/12.205842
King-Sun Fu, Mark A. Aizerman, Syntactic Methods in Pattern Recognition ,(1974)
Daniel S Le, George R Thoma, Harry Wechsler, Automated page orientation and skew angle detection for binary document images Pattern Recognition. ,vol. 27, pp. 1325- 1344 ,(1994) , 10.1016/0031-3203(94)90068-X