An explicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of an infinite family of nonexpansive mappings

作者: Huimin He , Sanyang Liu , Haiyun Zhou

DOI: 10.1016/J.NA.2009.12.002

关键词:

摘要: Abstract Let H be a Hilbert space and C nonempty closed convex subset of , { T i } ∈ N family nonexpansive mappings from into G : × → R finite equilibrium functions ( 1 2 … K ) A strongly positive bounded linear operator with coefficient γ B λ -Lipschitzian, relaxed μ ν -cocoercive map . Moreover, let r k n = α satisfy appropriate conditions F ≔ ∩ E P V I x ≠ 0 ; we introduce an explicit scheme which defines suitable sequence as follows: + f − W s S ⋯ ∀ converges to ∗ satisfies the variational inequality 〈 〉 ≥ for all The results presented in this paper mainly extend improve recent result Colao [V. Colao, An implicit method finding common solutions inequalities systems problems fixed points infinite mappings, Nonlinear Analysis (2009), doi:10.1016/j.na.2009.01.115 ] Qin [X. Qin, M. Shang, Y. Su, general iterative point spaces, 69 (2008) 3897–3909].

参考文章(25)
W Oettli, E. Blum, From optimization and variational inequalities to equilibrium problems Math. Student. ,vol. 63, pp. 123- 145 ,(1994)
H.K. Xu, An Iterative Approach to Quadratic Optimization Journal of Optimization Theory and Applications. ,vol. 116, pp. 659- 678 ,(2003) , 10.1023/A:1023073621589
Haiyun Zhou, Convergence theorems for -strict pseudo-contractions in 2-uniformly smooth Banach spaces Nonlinear Analysis: Theory, Methods & Applications. ,vol. 69, pp. 3160- 3173 ,(2008) , 10.1016/J.NA.2007.09.009
W. A. Kirk, Kazimierz Goebel, Topics in metric fixed point theory ,(1990)
Wataru Takahashi, Kazuya Shimoji, STRONG CONVERGENCE TO COMMON FIXED POINTS OF INFINITE NONEXPANSIVE MAPPINGS AND APPLICATIONS Taiwanese Journal of Mathematics. ,vol. 5, pp. 387- 404 ,(2001) , 10.11650/TJM.5.2001.1233
Huimin He, Rudong Chen, Strong Convergence Theorems of the CQ Method for Nonexpansive Semigroups Fixed Point Theory and Applications. ,vol. 2007, pp. 059735- ,(2007) , 10.1155/2007/59735
Somyot Plubtieng, Rattanaporn Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces Journal of Mathematical Analysis and Applications. ,vol. 336, pp. 455- 469 ,(2007) , 10.1016/J.JMAA.2007.02.044
Heinz H. Bauschke, The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space Journal of Mathematical Analysis and Applications. ,vol. 202, pp. 150- 159 ,(1996) , 10.1006/JMAA.1996.0308
Alfredo N. Iusem, Wilfredo Sosa, New existence results for equilibrium problems Nonlinear Analysis-theory Methods & Applications. ,vol. 52, pp. 621- 635 ,(2003) , 10.1016/S0362-546X(02)00154-2
Xiaolong Qin, Meijuan Shang, Yongfu Su, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces Nonlinear Analysis: Theory, Methods & Applications. ,vol. 69, pp. 3897- 3909 ,(2008) , 10.1016/J.NA.2007.10.025