A Method to Extract Feature Variables Contributed in Nonlinear Machine Learning Prediction.

作者: Mayumi Suzuki , Takuma Shibahara , Yoshihiro Muragaki

DOI: 10.1055/S-0040-1701615

关键词:

摘要: Background Although advances in prediction accuracy have been made with new machine learning methods, such as support vector machines and deep neural networks, these methods make nonlinear models thus lack the ability to explain basis of their predictions. Improving explanatory capabilities would increase reliability Objective Our objective was develop a factor analysis technique that enables presentation feature variables used making predictions, even models. Methods A consisted two techniques: backward extraction technique. We developed extracted obtained from posterior probability distribution model which calculated by Results In evaluation, using gene expression data prostate tumor patients healthy subjects, networks approximately 5% better than machines. Then rate concordance between an earlier report Jensen–Shannon divergence ones this elimination Hilbert–Schmidt independence criteria 40% for top five variables, 10, 49% 100. Conclusion The results showed can be evaluated different viewpoints techniques. In future, we hope use verify characteristics features technique, perform clinical studies genes, experiment.

参考文章(12)
John F MacDonald, Michael F Jackson, Yu-Feng Xie, TRPM2, calcium and neurodegenerative diseases. International journal of physiology, pathophysiology and pharmacology. ,vol. 2, pp. 95- 103 ,(2010)
Vito De Pinto, Angela Messina, Darius J.R. Lane, Alfons Lawen, Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Letters. ,vol. 584, pp. 1793- 1799 ,(2010) , 10.1016/J.FEBSLET.2010.02.049
Koji Nemoto, Koji Hukushima, Exchange Monte Carlo Method and Application to Spin Glass Simulations Journal of the Physical Society of Japan. ,vol. 65, pp. 1604- 1608 ,(1996) , 10.1143/JPSJ.65.1604
D. De Semir, M. Nosrati, V. Bezrookove, A. A. Dar, S. Federman, G. Bienvenu, S. Venna, J. Rangel, J. Climent, T. M. Meyer Tamguney, S. Thummala, S. Tong, S. P. L. Leong, C. Haqq, P. Billings, J. R. Miller, R. W. Sagebiel, R. Debs, M. Kashani-Sabet, Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 7067- 7072 ,(2012) , 10.1073/PNAS.1119949109
Caroline Rimkus, Jan Friederichs, Anne–laure Boulesteix, Jörg Theisen, Jörg Mages, Karen Becker, Hjalmar Nekarda, Robert Rosenberg, Klaus–Peter Janssen, Jörg Rüdiger Siewert, Microarray-Based Prediction of Tumor Response to Neoadjuvant Radiochemotherapy of Patients With Locally Advanced Rectal Cancer Clinical Gastroenterology and Hepatology. ,vol. 6, pp. 53- 61 ,(2008) , 10.1016/J.CGH.2007.10.022
Weder Pereira Cardoso, Odilon Victor Porto Denardin, Abrão Rapoport, Vera Cavalcanti Araújo, Marcos Brasilino Carvalho, Proliferating cell nuclear antigen expression in mucoepidermoid carcinoma of salivary glands Sao Paulo Medical Journal. ,vol. 118, pp. 69- 74 ,(2000) , 10.1590/S1516-31802000000300004
Yoshua Bengio, James Bergstra, Random search for hyper-parameter optimization Journal of Machine Learning Research. ,vol. 13, pp. 281- 305 ,(2012)
Le Song, Justin Bedo, Karsten M. Borgwardt, Arthur Gretton, Alex Smola, Gene selection via the BAHSIC family of algorithms intelligent systems in molecular biology. ,vol. 23, pp. 490- 498 ,(2007) , 10.1093/BIOINFORMATICS/BTM216
J. Lin, Divergence measures based on the Shannon entropy IEEE Transactions on Information Theory. ,vol. 37, pp. 145- 151 ,(1991) , 10.1109/18.61115