The construction of an asymptotic center with a fixed-point property

作者: Michael Edelstein

DOI: 10.1090/S0002-9904-1972-12918-5

关键词:

摘要: ABSTRACT. Given a bounded sequence {un: n = 1,2,...} of points in closed convex subset C uniformly Banach space, cm denotes the point with property that among all balls centered at and containing {um,um+lt...} one is smallest radius. It shown {cm: m converges (strongly) to ceC called asymptotic center {un} respect C. Further, for class mappings ƒ into itself, which contains nonexpansive mappings, f(c) c whenever an x e exists such "(x) «„,« 1,2,... .

参考文章(2)
F. E. Browder, NONEXPANSIVE NONLINEAR OPERATORS IN A BANACH SPACE Proceedings of the National Academy of Sciences. ,vol. 54, pp. 1041- 1044 ,(1965) , 10.1073/PNAS.54.4.1041
Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung Mathematische Nachrichten. ,vol. 30, pp. 251- 258 ,(1965) , 10.1002/MANA.19650300312