Cluster expansion method and its application in computational materials science

作者: Qu Wu , Bing He , Tao Song , Jian Gao , Siqi Shi

DOI: 10.1016/J.COMMATSCI.2016.08.034

关键词:

摘要: Abstract As an approximate computation method, cluster expansion is a power series of the partition function, which was proposed by Mayer in 1941. In computational materials science, often applied to pipelining models calculation. this paper, we outline historical background science and firstly, introduce system formalism. Then review applications science. Especially, for combination first-principles calculation Monte Carlo simulation, popular model with expansion, detailed steps are presented.

参考文章(73)
J. W. D. Connolly, A. R. Williams, Alloy Phase Diagrams From First Principles Springer, Boston, MA. pp. 581- 592 ,(1984) , 10.1007/978-1-4613-2405-8_9
Jagdish Mehra, Helmut Rechenberg, The Historical Development of Quantum Theory ,(1982)
Fei Zhou, Thomas Maxisch, Gerbrand Ceder, Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of Li x FePO 4 Physical Review Letters. ,vol. 97, pp. 155704- ,(2006) , 10.1103/PHYSREVLETT.97.155704
J. Teeriniemi, P. Taskinen, K. Laasonen, First-principles investigation of the Cu–Ni, Cu–Pd, and Ni–Pd binary alloy systems Intermetallics. ,vol. 57, pp. 41- 50 ,(2015) , 10.1016/J.INTERMET.2014.09.006
M. Stone, Cross-validation:a review 2 Statistics. ,vol. 9, pp. 127- 139 ,(1978) , 10.1080/02331887808801414
A. Berera, D. de Fontaine, Oxygen-vacancy phase equilibria in YBa2Cu3Oz calculated by the cluster variation method. Physical Review B. ,vol. 39, pp. 6727- 6736 ,(1989) , 10.1103/PHYSREVB.39.6727
B. L. Gyorffy, G. M. Stocks, Concentration waves and Fermi surfaces in random metallic alloys Physical Review Letters. ,vol. 50, pp. 374- 377 ,(1983) , 10.1103/PHYSREVLETT.50.374
Naoyuki Sakumichi, Yusuke Nishida, Masahito Ueda, Lee-Yang cluster expansion approach to the BCS-BEC crossover: BCS and BEC limits Physical Review A. ,vol. 89, pp. 033622- ,(2014) , 10.1103/PHYSREVA.89.033622