DOWNSIDE RISK AND KAPPA INDEX OF NON-GAUSSIAN PORTFOLIO WITH LPM

作者: Jules Sadefo Kamdem

DOI:

关键词:

摘要: In this paper, we nd analytic expressions of the lower partial moment and kappa index linear portfolios when returns are elliptically distributed. We also introduced notion Target Semi-Kurtosis portfolio return discuss robust optimization Mean-LPM problem with non-gaussian risk factors. Special attention is given to particular case a mixture multivariate t-distributions.

参考文章(26)
Hiroshi Konno, Hayato Waki, Atsushi Yuuki, Portfolio Optimization under Lower Partial Risk Measures Asia-pacific Financial Markets. ,vol. 9, pp. 127- 140 ,(2002) , 10.1023/A:1022238119491
Paul Embrechts, Alexander J. McNeil, Daniel Straumann, Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls Cambridge University Press. pp. 176- 223 ,(2002) , 10.1017/CBO9780511615337.008
Shushang Zhu, Duan Li, Shouyang Wang, None, Robust portfolio selection under downside risk measures Quantitative Finance. ,vol. 9, pp. 869- 885 ,(2009) , 10.1080/14697680902852746
A. D. Roy, Safety first and the holding of assetts Econometrica. ,vol. 20, pp. 431- ,(1952) , 10.2307/1907413
F. Greselin, S. Ingrassia, Constrained monotone EM algorithms for mixtures of multivariate t distributions Statistics and Computing. ,vol. 20, pp. 9- 22 ,(2010) , 10.1007/S11222-008-9112-9
Laurent El Ghaoui, Maksim Oks, Francois Oustry, Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach Operations Research. ,vol. 51, pp. 543- 556 ,(2003) , 10.1287/OPRE.51.4.543.16101
Vijay S. Bawa, Eric B. Lindenberg, Capital market equilibrium in a mean-lower partial moment framework Journal of Financial Economics. ,vol. 5, pp. 189- 200 ,(1977) , 10.1016/0304-405X(77)90017-4
Peter C Fishburn, Foundations of risk measurement. II. Effects of gains on risk Journal of Mathematical Psychology. ,vol. 25, pp. 226- 242 ,(1982) , 10.1016/0022-2496(82)90050-5