Quantum Information in Geometric Quantum Mechanics

作者: Georg Friedrich Volkert

DOI: 10.6092/UNINA/FEDOA/8930

关键词:

摘要: A fundamental starting point in quantum information theory is the consideration of von Neumann entropy and its generalization to relative entropies. particular feature entropies their relation via Hessian monotonic Riemannian metrics on dense set invertible mixed states (Lesniewski Ruskai 1999). These are also known as Fisher provide a direct link estimation (Helstrom 1969). Quantum which extendable pure coincide all with Fubini Study metric projective Hilbert space complex rays. This theses outlines possible advantages an inverse approach theory, by rather then entropy. This done first step associating covariant contra-variant structure punctured being available geometric formulation mechanics. While leads version Cramer-Rao inequality for general 1-dimensional submanifolds states, provides alternative entanglement monotones identifying inner product pullback tensor fields local unitary group orbits states. It shown case two qubits that these yield more efficient than standard measures from literature those associated linearization

参考文章(80)
Ingemar Bengtsson, Karol Zyczkowski, Geometry of Quantum States gqs. pp. 418- ,(2006) , 10.2277/0521814510
Giuseppe Marmo, E. Saletan, B. Vitale, A. Simoni, Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction ,(1985)
C. Radhakrishna Rao, Information and the Accuracy Attainable in the Estimation of Statistical Parameters Bull Calcutta. Math. Soc.. ,vol. 37, pp. 235- 247 ,(1992) , 10.1007/978-1-4612-0919-5_16
Paul Robert Chernoff, Jerrold Eldon Marsden, Properties of infinite dimensional Hamiltonian systems ,(1974)
M. C. Abbati, R. Cirelli, P. Lanzavecchia, A. Maniá, Pure states of general quantum-mechanical systems as Kähler bundles Il Nuovo Cimento B Series 11. ,vol. 83, pp. 43- 60 ,(1984) , 10.1007/BF02723763
D. P. Divincenzo, TOPICS IN QUANTUM COMPUTERS arXiv: Mesoscale and Nanoscale Physics. pp. 657- 677 ,(1997) , 10.1007/978-94-015-8839-3_18
J. Clemente-Gallardo, P. Aniello, G. F. Volkert, G. Marmo, From Geometric Quantum Mechanics to Quantum Information arXiv: Mathematical Physics. ,(2011)
Vladimir Igorevich Arnolʹd, Djilali Embarek, Les méthodes mathématiques de la mécanique classique in-house reproduction. ,(1976)
Franco Ventriglia, Alberto Simoni, Giusseppe Marmo, Geometrical structures emerging from Quantum Mechanics Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza. pp. 161- 172 ,(2006)