Quantifying the added value of climate information in a spatio-temporal dengue model

作者: Rachel Lowe , Bernard Cazelles , Richard Paul , Xavier Rodó

DOI: 10.1007/S00477-015-1053-1

关键词:

摘要: Dengue is the world’s most important vector-borne viral disease. The dengue mosquito and virus are sensitive to climate variability change. Temperature, humidity precipitation influence biology, abundance habitat, replication speed. In this study, we develop a modelling procedure quantify added value of including information in model for 76 provinces Thailand, from 1982–2013. We first developed seasonal-spatial model, account dependency structures 1 month next between provinces. then tested temperature variables at varying time lags, using linear nonlinear functional forms, determine an optimum combination lags describe relative risk. Model parameters were estimated integrated nested Laplace approximation. This approach provides novel opportunity perform selection Bayesian framework, while accounting underlying spatial temporal or forms. quantified additional variation explained by interannual variations, above that provided model. Overall, 8 % variance risk can be variations previous month. inclusion functions framework improved 79 % Therefore, forecast could significantly contribute national early warning system Thailand.

参考文章(66)
Kevin A Parton, Peng Bi, Shilu Tong, Ken Donald, Jack Hobbs, Climate variability and the Dengue outbreak in Townsville, Queensland, 1992-93 Environmental Health. ,vol. 1, pp. 54- ,(2001)
Surapee Anantapreecha, Areerat Sa-ngasang, Pathom Sawanpanyalert, Sumalee Chanama, Ichiro Kurane, Atchareeya A-nuegoonpipat, Sirirat Naemkhunthot, Annual Changes of Predominant Dengue Virus Serotypes in Six Regional Hospitals in Thailand from 1999 to 2002 ,(2004)
Sutee Yoksan, Wutjanun Muttitanon, Narong Nitatpattana, Philippe Barbazan, Jean Paul Gonzalez, Chusak Kongkanon, Pongpan Kongthong, Spatial and Temporal Dynamics of Dengue Haemorrhagic Fever Epidemics, Nakhon Pathom Province, Thailand, 1997-2001 ,(2004)
I. Harris, P.D. Jones, T.J. Osborn, D.H. Lister, Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset International Journal of Climatology. ,vol. 34, pp. 623- 642 ,(2014) , 10.1002/JOC.3711
Harold Townson, P. Guillet, R. Bos, M. Zaim, M. B. Nathan, L. Manga, M. Kindhauser, Exploiting the potential of vector control for disease prevention Bulletin of The World Health Organization. ,vol. 83, pp. 942- 947 ,(2005) , 10.1590/S0042-96862005001200017
Phaisarn Jeefoo, Nitin Kumar Tripathi, Marc Souris, Spatio-Temporal Diffusion Pattern and Hotspot Detection of Dengue in Chachoengsao Province, Thailand International Journal of Environmental Research and Public Health. ,vol. 8, pp. 51- 74 ,(2010) , 10.3390/IJERPH8010051
Nils Benjamin Tjaden, Stephanie Margarete Thomas, Dominik Fischer, Carl Beierkuhnlein, Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence PLoS Neglected Tropical Diseases. ,vol. 7, pp. e2207- ,(2013) , 10.1371/JOURNAL.PNTD.0002207
Julian Besag, Peter Green, David Higdon, Kerrie Mengersen, Bayesian Computation and Stochastic Systems Statistical Science. ,vol. 10, pp. 3- 41 ,(1995) , 10.1214/SS/1177010123
Elodie Descloux, Morgan Mangeas, Christophe Eugène Menkes, Matthieu Lengaigne, Anne Leroy, Temaui Tehei, Laurent Guillaumot, Magali Teurlai, Ann-Claire Gourinat, Justus Benzler, Anne Pfannstiel, Jean-Paul Grangeon, Nicolas Degallier, Xavier De Lamballerie, None, Climate-Based Models for Understanding and Forecasting Dengue Epidemics PLoS Neglected Tropical Diseases. ,vol. 6, pp. e1470- ,(2012) , 10.1371/JOURNAL.PNTD.0001470