Using Neural Networks To Improve Single-Cell RNA-Seq Data Analysis

作者: Chieh Lin , Siddhartha Jain , Hannah Kim , Ziv Bar-Joseph

DOI: 10.1101/129759

关键词:

摘要: While only recently developed, the ability to profile expression data in single cells (scRNA-Seq) has already led several important studies and findings. However, this technology also raised new computational challenges including questions related handling noisy sometimes incomplete data, how identify unique group of such experiments determine state or function specific based on their profile. To address these issues we develop test a method neural networks (NN) for analysis retrieval cell RNA-Seq data. We tested various NN architectures, some biologically motivated, used obtain reduced dimension representation show that improves upon prior methods both, correctly not training infer type by querying database tens thousands profiles. Such queries (which can be performed using our web server) will enable researchers better characterize when analyzing heterogeneous scRNA-Seq samples.

参考文章(52)
Stefano Monti, Pablo Tamayo, Jill Mesirov, Todd Golub, Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data Machine Learning. ,vol. 52, pp. 91- 118 ,(2003) , 10.1023/A:1023949509487
Spyros Darmanis, Steven A. Sloan, Ye Zhang, Martin Enge, Christine Caneda, Lawrence M. Shuer, Melanie G. Hayden Gephart, Ben A. Barres, Stephen R. Quake, A survey of human brain transcriptome diversity at the single cell level Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 7285- 7290 ,(2015) , 10.1073/PNAS.1507125112
Jaehoon Shin, Daniel A. Berg, Yunhua Zhu, Joseph Y. Shin, Juan Song, Michael A. Bonaguidi, Grigori Enikolopov, David W. Nauen, Kimberly M. Christian, Guo-li Ming, Hongjun Song, Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell. ,vol. 17, pp. 360- 372 ,(2015) , 10.1016/J.STEM.2015.07.013
A. Zeisel, A. B. Munoz-Manchado, S. Codeluppi, P. Lonnerberg, G. La Manno, A. Jureus, S. Marques, H. Munguba, L. He, C. Betsholtz, C. Rolny, G. Castelo-Branco, J. Hjerling-Leffler, S. Linnarsson, Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq Science. ,vol. 347, pp. 1138- 1142 ,(2015) , 10.1126/SCIENCE.AAA1934
Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, John L Rinn, The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells Nature Biotechnology. ,vol. 32, pp. 381- 386 ,(2014) , 10.1038/NBT.2859
Asish K Ghosh, John Varga, The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis. Journal of Cellular Physiology. ,vol. 213, pp. 663- 671 ,(2007) , 10.1002/JCP.21162
Kristine C. Rustad, Victor W. Wong, Geoffrey C. Gurtner, The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation Differentiation. ,vol. 86, pp. 87- 91 ,(2013) , 10.1016/J.DIFF.2013.02.003
Florian Buettner, Kedar N Natarajan, F Paolo Casale, Valentina Proserpio, Antonio Scialdone, Fabian J Theis, Sarah A Teichmann, John C Marioni, Oliver Stegle, Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells Nature Biotechnology. ,vol. 33, pp. 155- 160 ,(2015) , 10.1038/NBT.3102
Q. Deng, D. Ramskold, B. Reinius, R. Sandberg, Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. ,vol. 343, pp. 193- 196 ,(2014) , 10.1126/SCIENCE.1245316
Marcel H Schulz, William E Devanny, Anthony Gitter, Shan Zhong, Jason Ernst, Ziv Bar-Joseph, DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data BMC Systems Biology. ,vol. 6, pp. 104- 104 ,(2012) , 10.1186/1752-0509-6-104