Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels.

作者: Xia Liu , Siwen Liu , Liv Bode , Chengyu Liu , Liang Zhang

DOI: 10.1016/J.VIROL.2015.06.024

关键词:

摘要: Abstract Background Borna disease virus (BDV) is a neurotropic RNA persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. quantifiable proteome annotated using bioinformatics. Results We identified and quantified 791 sites in 473 proteins human Hu-H1-infected non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that infection alters metabolic proteins, membrane-associated transmembrane transporter activity, affects several lysine acetyltransferases (KAT). Conclusions Upon persistence OL manipulated towards higher energy levels necessary shuttling from nuclear replication sites.

参考文章(57)
H. LUDWIG, L. BODE, Borna disease virus: new aspects on infection, disease, diagnosis and epidemiology. Revue Scientifique Et Technique De L Office International Des Epizooties. ,vol. 19, pp. 259- 288 ,(2000) , 10.20506/RST.19.1.1217
G Vidali, E L Gershey, V G Allfrey, Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones. Journal of Biological Chemistry. ,vol. 243, pp. 6361- 6366 ,(1968) , 10.1016/S0021-9258(18)93148-0
M. Hornig, M. Solbrig, N. Horscroft, H. Weissenböck, W. I. Lipkin, Borna disease virus infection of adult and neonatal rats: models for neuropsychiatric disease. Current Topics in Microbiology and Immunology. ,vol. 253, pp. 157- 177 ,(2001) , 10.1007/978-3-662-10356-2_8
Yasuhide Iwata, Kazuo Takahashi, Xie Peng, Koji Fukuda, Koei Ohno, Tsuguhiro Ogawa, Kenji Gonda, Norio Mori, Shin-ichi Niwa, Shiro Shigeta, Detection and Sequence Analysis of Borna Disease Virus p24 RNA from Peripheral Blood Mononuclear Cells of Patients with Mood Disorders or Schizophrenia and of Blood Donors Journal of Virology. ,vol. 72, pp. 10044- 10049 ,(1998) , 10.1128/JVI.72.12.10044-10049.1998
R Rott, S Herzog, B Fleischer, A Winokur, J Amsterdam, W Dyson, H Koprowski, Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders Science. ,vol. 228, pp. 755- 756 ,(1985) , 10.1126/SCIENCE.3922055
Aixia Zhai, Jun Qian, Wenping Kao, Aimei Li, Yujun Li, Junming He, Qingmeng Zhang, Wuqi Song, Yingmei Fu, Jing Wu, Xiaobei Chen, Hui Li, Zhaohua Zhong, Hong Ling, Fengmin Zhang, None, Borna disease virus encoded phosphoprotein inhibits host innate immunity by regulating miR-155 Antiviral Research. ,vol. 98, pp. 66- 75 ,(2013) , 10.1016/J.ANTIVIRAL.2013.02.009
Xia Liu, Libo Zhao, Yongtao Yang, Liv Bode, Hua Huang, Chengyu Liu, Rongzhong Huang, Liang Zhang, Xiao Wang, Lujun Zhang, Siwen Liu, Jingjing Zhou, Xin Li, Tieming He, Zhongyi Cheng, Peng Xie, Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells. Virology. ,vol. 464, pp. 196- 205 ,(2014) , 10.1016/J.VIROL.2014.06.040
Y.-J. Wu, H. Schulz, C.-C. Lin, K. Saar, G. Patone, H. Fischer, N. Hubner, B. Heimrich, M. Schwemmle, Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors Proceedings of the National Academy of Sciences of the United States of America. ,vol. 110, pp. 1899- 1904 ,(2013) , 10.1073/PNAS.1214939110
Brent L. Williams, Mady Hornig, Kavitha Yaddanapudi, W. Ian Lipkin, Hippocampal Poly(ADP-Ribose) Polymerase 1 and Caspase 3 Activation in Neonatal Bornavirus Infection Journal of Virology. ,vol. 82, pp. 1748- 1758 ,(2008) , 10.1128/JVI.02014-07