QED calculation of the dipole polarizability of helium atom

作者: Mariusz Puchalski , Krzysztof Szalewicz , Michał Lesiuk , Bogumił Jeziorski , None

DOI: 10.1103/PHYSREVA.101.022505

关键词:

摘要: The QED contribution to the dipole polarizability of $^{4}\mathrm{He}$ atom was computed, including effect finite nuclear mass. computationally most challenging second electric-field derivative Bethe logarithm obtained using two different methods: integral representation method Schwartz and sum-over-states approach Goldman Drake. results both calculations are consistent, although former turned out be much more accurate. value logarithm, equal 0.048 557 2(14) in atomic units, confirms small magnitude this quantity found only previous calculation [G. \L{}ach, B. Jeziorski, K. Szalewicz, Phys. Rev. Lett. 92, 233001 (2004)], but differs from it by about 5%. origin difference is explained. total correction order ${\ensuremath{\alpha}}^{3}$ fine-structure constant $\ensuremath{\alpha}$ amounts $30.6671(1)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$, $0.1822\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ $0.011\phantom{\rule{0.16em}{0ex}}12(1)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ for mass, with all values units. resulting theoretical molar helium-4 $0.517\phantom{\rule{0.16em}{0ex}}254\phantom{\rule{0.16em}{0ex}}08(5)\phantom{\rule{4pt}{0ex}}{\mathrm{cm}}^{3}/\text{mol}$ error estimate dominated uncertainty corrections ${\ensuremath{\alpha}}^{4}$ higher. Our agreement an accurate than result $0.517\phantom{\rule{0.16em}{0ex}}254\phantom{\rule{0.16em}{0ex}}4(10)\phantom{\rule{0.28em}{0ex}}{\mathrm{cm}}^{3}/\text{mol}$ recent experimental determination [C. Gaiser Fellmuth, 120, 123203 (2018)].

参考文章(58)
Krzysztof Pachucki, {alpha}{sup 4}R corrections to singlet states of helium Physical Review A. ,vol. 74, ,(2006) , 10.1103/PHYSREVA.74.022512
Vladimir A. Yerokhin, Krzysztof Pachucki, Theoretical energies of low-lying states of light helium-like ions Physical Review A. ,vol. 81, pp. 022507- ,(2010) , 10.1103/PHYSREVA.81.022507
Hiroyuki Nakashima, Hiroshi Nakatsuji, Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction "ICI… method Journal of Chemical Physics. ,vol. 127, pp. 224104- 224104 ,(2007) , 10.1063/1.2801981
S. P. Goldman, G. W. F. Drake, High accuracy for atomic calculations involving logarithmic sums Physical Review A. ,vol. 61, pp. 052513- ,(2000) , 10.1103/PHYSREVA.61.052513
Z.-C. Yan, W. Nörtershäuser, G. W. F. Drake, High precision atomic theory for Li and Be+: QED shifts and isotope shifts. Physical Review Letters. ,vol. 100, pp. 243002- ,(2008) , 10.1103/PHYSREVLETT.100.243002
Mariusz Puchalski, Krzysztof Pachucki, Relativistic, QED, and finite nuclear mass corrections for low-lying states of Li and Be + Physical Review A. ,vol. 78, pp. 052511- ,(2008) , 10.1103/PHYSREVA.78.052511
Krzysztof Pachucki, Jonathan Sapirstein, Relativistic and QED corrections to the polarizability of helium Physical Review A. ,vol. 63, pp. 012504- ,(2000) , 10.1103/PHYSREVA.63.012504