Multivariate exact and falsified sampling approximation

作者: M. Skopina , A. Krivoshein

DOI:

关键词:

摘要: Approximation properties of the expansions $\sum_{k\in{\mathbb z}^d}c_k\phi(M^jx+k)$, where $M$ is a matrix dilation, $c_k$ either sampled value signal $f$ at $M^{-j}k$ or integral average near (falsified value), are studied. Error estimations in $L_p$-norm, $2\le p\le\infty$, given terms Fourier transform $f$. The approximation order depends on how smooth $f$, Strang-Fix condition for $\phi$ and $M$. Some special required. To estimate falsified sampling we compare them with differential $\sum_{k\in\,{\mathbb z}^d} Lf(M^{-j}\cdot)(-k)\phi(M^jx+k)$, $L$ an appropriate operator. concrete functions applicable implementations constructed. In particular, compactly supported splines band-limited can be taken as $\phi$. these provide interpolating points $M^{-j}k$.

参考文章(11)
V. S. Vladimirov, Generalized functions in mathematical physics Moscow Izdatel Nauka. ,(1976)
Rong-Qing Jia, Approximation properties of multivariate wavelets Mathematics of Computation. ,vol. 67, pp. 647- 665 ,(1998) , 10.1090/S0025-5718-98-00925-9
P.L. Butzer, J.R. Higgins, R.L. Stens, Classical and approximate sampling theorems: studies in the L P (R) and the uniform norm Journal of Approximation Theory. ,vol. 137, pp. 250- 263 ,(2005) , 10.1016/J.JAT.2005.07.011
C. Bardaro, P.L. Butzer, R.L. Stens, G. Vinti, Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals Journal of Mathematical Analysis and Applications. ,vol. 316, pp. 269- 306 ,(2006) , 10.1016/J.JMAA.2005.04.042
M. Skopina, Band-limited scaling and wavelet expansions Applied and Computational Harmonic Analysis. ,vol. 36, pp. 143- 157 ,(2014) , 10.1016/J.ACHA.2013.03.003
P.L. Butzer, M.M. Dodson, P.J.S.G. Ferreira, J.R. Higgins, O. Lange, P. Seidler, R.L. Stens, Multiplex signal transmission and the development of sampling techniques: the work of Herbert Raabe in contrast to that of Claude Shannon Applicable Analysis. ,vol. 90, pp. 643- 688 ,(2011) , 10.1080/00036811.2010.549474
Bin Han, Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function SIAM Journal on Matrix Analysis and Applications. ,vol. 24, pp. 693- 714 ,(2003) , 10.1137/S0895479801390868
E. T. Whittaker, XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory Proceedings of the Royal Society of Edinburgh. ,vol. 35, pp. 181- 194 ,(1915) , 10.1017/S0370164600017806
J.L Brown, On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem Journal of Mathematical Analysis and Applications. ,vol. 18, pp. 75- 84 ,(1967) , 10.1016/0022-247X(67)90183-7