5.2 Pyrolysis of Active and Passive Filler-loaded Preceramic Polymers

作者: P GREIL

DOI: 10.1016/B978-012654640-8/50008-0

关键词:

摘要: This chapter discusses the fundamental aspects of filler to polymer interaction during manufacturing ceramics from filler-loaded preceramic polymers. Both active as well inert fillers may be used reduce overall dimensional changes associated with thermal degradation phase. Additionally, have a strong impact on resulting properties such mechanical, electrical, and behavior. Incorporation offers possibility improve mechanical physical chemical polymer-derived ceramics. Preceramic polymers containing can transformed ceramic microcomposites reduced shrinkage pyrolysis. Volume-invariant polymer-ceramic conversion is attributed reaction reactive solid or gaseous decomposition products in formation network Reduction pyrolysis temperature results partially converted organic-inorganic hybrid materials. Compared high-temperature polymers, novel materials an improved stability, whereas, compared conventional ceramics, they offer better geometrical accuracy at significantly lower temperatures. Tailoring hierarchical microstructures new possibilities for application fields machinery, electronics, medicine.

参考文章(52)
David S. McLachlan, Michael Blaszkiewicz, Robert E. Newnham, Electrical Resistivity of Composites Journal of the American Ceramic Society. ,vol. 73, pp. 2187- 2203 ,(1990) , 10.1111/J.1151-2916.1990.TB07576.X
David R. Clarke, Interpenetrating Phase Composites Journal of the American Ceramic Society. ,vol. 75, pp. 739- 758 ,(1992) , 10.1111/J.1151-2916.1992.TB04138.X
Kevin Jakubenas, H. L. Marcus, Silicon Carbide from Laser Pyrolysis of Polycarbosilane Journal of the American Ceramic Society. ,vol. 78, pp. 2263- 2266 ,(1995) , 10.1111/J.1151-2916.1995.TB08653.X
G. Pouskouleli, Metallorganic compounds as preceramic materials II. Oxide ceramics Ceramics International. ,vol. 15, pp. 255- 270 ,(1989) , 10.1016/0272-8842(89)90028-X
Martin Christ, Günter Thurn, Markus Weinmann, Joachim Bill, Fritz Aldinger, High‐Temperature Mechanical Properties of Si‐B‐C‐N‐Precursor‐Derived Amorphous Ceramics and the Applicability of Deformation Models Developed for Metallic Glasses Journal of the American Ceramic Society. ,vol. 83, pp. 3025- 3032 ,(2000) , 10.1111/J.1151-2916.2000.TB01678.X
G. D. Soraru, Florence Babonneau, J. D. Mackenzie, Structural evolutions from polycarbosilane to SiC ceramic Journal of Materials Science. ,vol. 25, pp. 3886- 3893 ,(1990) , 10.1007/BF00582455
Michael Seibold, Peter Greil, Thermodynamics and microstructural development of ceramic composite formation by active filler-controlled pyrolysis (AFCOP) Journal of The European Ceramic Society. ,vol. 11, pp. 105- 113 ,(1993) , 10.1016/0955-2219(93)90041-O
Gary M. Renlund, Svante Prochazka, Robert H. Doremus, Silicon oxycarbide glasses: Part I. Preparation and chemistry Journal of Materials Research. ,vol. 6, pp. 2716- 2722 ,(1991) , 10.1557/JMR.1991.2716
T. Ishikawa, T. Yamamura, K. Okamura, Production mechanism of polytitanocarbosilane and its conversion of the polymer into inorganic materials Journal of Materials Science. ,vol. 27, pp. 6627- 6634 ,(1992) , 10.1007/BF01165946
Hans-Peter Baldus, Martin Jansen, Novel High-Performance Ceramics—Amorphous Inorganic Networks from Molecular Precursors Angewandte Chemie International Edition in English. ,vol. 36, pp. 328- 343 ,(1997) , 10.1002/ANIE.199703281