The global cracking laws for a finite-element model of no-tension material

作者: Salvatore Caddemi

DOI: 10.1016/0020-7462(92)90023-Z

关键词:

摘要: Abstract For perfect no-tension materials (NRT) the validity of local stability postulate Drucker, well known in plasticity, has been assumed so far and utilized to derive cracking laws, which relate strain states stress each other. On this base a finite-element (FE) model with suitable constitutive behaviour for single FE is presented. Classical approaches enforce laws at Gauss points FEs. In work it shown that taking into account strains, suitably modelled, over whole domain making use an energy approach lead general describing FE. The analysis masonry structures plane also presented prove efficiency such

参考文章(18)
W. S. Venturini, C. Brebbia, The Boundary Element Method for the Solution of No — Tension Materials Springer, Berlin, Heidelberg. pp. 371- 396 ,(1981) , 10.1007/978-3-662-11270-0_24
D. C. Drucker, A DEFINITION OF STABLE INELASTIC MATERIAL Defense Technical Information Center. ,(1957) , 10.21236/AD0143756
Jacques Heyman, The stone skeleton ,(1995)
Teotista Panzeca, Castrenze Polizzotto, Constitutive equations for no-tension materials Meccanica. ,vol. 23, pp. 88- 93 ,(1988) , 10.1007/BF01556706
Jacques Heyman, The safety of masonry arches International Journal of Mechanical Sciences. ,vol. 11, pp. 363- 385 ,(1969) , 10.1016/0020-7403(69)90070-8
G. Maier, A. Nappi, A theory of no-tension discretized structural systems Engineering Structures. ,vol. 12, pp. 227- 234 ,(1990) , 10.1016/0141-0296(90)90021-J
W.S. Venturini, C.A. Brebbia, Boundary element formulation for nonlinear applications in geomechanics Applied Mathematical Modelling. ,vol. 8, pp. 251- 260 ,(1984) , 10.1016/0307-904X(84)90159-8
Claudio Franciosi, Limit behaviour of masonry arches in the presence of finite displacements International Journal of Mechanical Sciences. ,vol. 28, pp. 463- 471 ,(1986) , 10.1016/0020-7403(86)90066-4