Comprehensive representation of the Lennard-Jones equation of state based on molecular dynamics simulation data.

作者: S. Pieprzyk , A. C. Brańka , Sz. Maćkowiak , D. M. Heyes

DOI: 10.1063/1.5021560

关键词:

摘要: The equation of state (EoS) the Lennard-Jones fluid is calculated using a new set molecular dynamics data which extends to higher temperature than in previous studies. modified Benedict-Webb-Rubin (MBWR) equation, goes up ca. T ∼ 6, reparametrized with simulation data. A analytic form for EoS, breaks range into two regions different forms and ≃ 35, also proposed. accuracy formulas at least as good MBWR fit much allowing it now encompass Amagat line. fitted formula high where system can be well represented by inverse power potential scaling, means that our specification covers entire (ρ, T) plane. Accurate Boyle, Amagat, inversion curves are presented. Parametrizations extrema loci isochoric, CV, isobaric, CP, heat capacities given. As found others, line maxima CP terminates critical point region, minima on freezing CV close or point, right point. No evidence divergence region found.

参考文章(78)
C. M. Colina, E. A. Müller, Molecular Simulation of Joule–Thomson Inversion Curves International Journal of Thermophysics. ,vol. 20, pp. 229- 235 ,(1999) , 10.1023/A:1021402902877
Tongfan Sun, Amyn S. Teja, AN EQUATION OF STATE FOR REAL FLUIDS BASED ON THE LENNARD-JONES POTENTIAL The Journal of Physical Chemistry. ,vol. 100, pp. 17365- 17372 ,(1996) , 10.1021/JP9620476
George Ruppeiner, Thermodynamic curvature from the critical point to the triple point. Physical Review E. ,vol. 86, pp. 021130- 021130 ,(2012) , 10.1103/PHYSREVE.86.021130
David M. Heyes, Claro T. Llaguno, Computer simulation and equation of state study of the Boyle and inversion temperature of simple fluids principles and practice of constraint programming. ,vol. 168, pp. 61- 68 ,(1992) , 10.1016/0301-0104(92)80109-9
Javier Pérez-Pellitero, Philippe Ungerer, Gerassimos Orkoulas, Allan D. Mackie, Critical point estimation of the Lennard-Jones pure fluid and binary mixtures Journal of Chemical Physics. ,vol. 125, pp. 054515- 054515 ,(2006) , 10.1063/1.2227027
Simón Reif-Acherman, The history of the rectilinear diameter law Química Nova. ,vol. 33, pp. 2003- 2010 ,(2010) , 10.1590/S0100-40422010000900033
William G. Hoover, Canonical dynamics: Equilibrium phase-space distributions Physical Review A. ,vol. 31, pp. 1695- 1697 ,(1985) , 10.1103/PHYSREVA.31.1695
Nicholas P. Bailey, Ulf R. Pedersen, Nicoletta Gnan, Thomas B. Schrøder, Jeppe C. Dyre, Pressure-energy correlations in liquids. II. Analysis and consequences Journal of Chemical Physics. ,vol. 129, pp. 184508- 184508 ,(2008) , 10.1063/1.2982249
Shuichi Nosé, Constant Temperature Molecular Dynamics Methods Progress of Theoretical Physics Supplement. ,vol. 103, pp. 1- 46 ,(1991) , 10.1143/PTPS.103.1
Wei Shi, J.Karl Johnson, Histogram reweighting and finite-size scaling study of the Lennard–Jones fluids Fluid Phase Equilibria. ,vol. 187, pp. 171- 191 ,(2001) , 10.1016/S0378-3812(01)00534-9