Clustering Theory Evaluation for Thermal Conductivity Enhancement of Titania Nanofluid

作者: Azadeh Ghadimi , Hendrik Simon Cornells Metselaar

DOI: 10.1002/9781118744109.CH24

关键词:

摘要: Nanofluid as a future cooling fluid attracted wide span of application due to its great capability heat dissipation. is suspension nanoparticles in base which often requires stabilization processing. In this study, 0.1%wt. TiO2 were mixed with distilled water. Three hours ultrasonication was applied prepare samples. Sodium lauryl sulfate (0.01-0.2) %wt. and pH (10-12) used stability controlling parameters order verify thermal conductivity particle size nanofluid. Central composite design (CCD) response surface methodology (RSM) develop model well defining the optimum condition experiments (DOE). Amongst variety theories, clustering agglomeration can be partially responsible for increasing rising among different nano-suspensions. Results revealed that conditions located at high low SDS concentration will accompanied larger sizes. KEYWORD: Clustering theory, nanofluid, conductivity,

参考文章(20)
Sheng-Qi Zhou, Rui Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid Applied Physics Letters. ,vol. 92, pp. 093123- ,(2008) , 10.1063/1.2890431
Ravi Prasher, Patrick E. Phelan, Prajesh Bhattacharya, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters. ,vol. 6, pp. 1529- 1534 ,(2006) , 10.1021/NL060992S
Patrick Phelan, Pawel Keblinski, William Evans, Ravi Prasher, Jacob Fish, Paul Meakin, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids International Journal of Heat and Mass Transfer. ,vol. 51, pp. 1431- 1438 ,(2008) , 10.1016/J.IJHEATMASSTRANSFER.2007.10.017
Maryam Abareshi, Elaheh K. Goharshadi, Seyed Mojtaba Zebarjad, Hassan Khandan Fadafan, Abbas Youssefi, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids Journal of Magnetism and Magnetic Materials. ,vol. 322, pp. 3895- 3901 ,(2010) , 10.1016/J.JMMM.2010.08.016
Tran X. Phuoc, Mehrdad Massoudi, Ruey-Hung Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan International Journal of Thermal Sciences. ,vol. 50, pp. 12- 18 ,(2011) , 10.1016/J.IJTHERMALSCI.2010.09.008
M. Yeganeh, N. Shahtahmasebi, A. Kompany, E.K. Goharshadi, A. Youssefi, L. Šiller, Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water International Journal of Heat and Mass Transfer. ,vol. 53, pp. 3186- 3192 ,(2010) , 10.1016/J.IJHEATMASSTRANSFER.2010.03.008
Dongsheng Wen, Guiping Lin, Saeid Vafaei, Kai Zhang, Review of nanofluids for heat transfer applications Particuology. ,vol. 7, pp. 141- 150 ,(2009) , 10.1016/J.PARTIC.2009.01.007
Wenhua Yu, David M. France, Jules L. Routbort, Stephen U. S. Choi, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements Heat Transfer Engineering. ,vol. 29, pp. 432- 460 ,(2008) , 10.1080/01457630701850851
S. Nosrati, N.S. Jayakumar, M.A. Hashim, Performance evaluation of supported ionic liquid membrane for removal of phenol. Journal of Hazardous Materials. ,vol. 192, pp. 1283- 1290 ,(2011) , 10.1016/J.JHAZMAT.2011.06.037
Majid Emami Meibodi, Mohsen Vafaie-Sefti, Ali Morad Rashidi, Azadeh Amrollahi, Mohsen Tabasi, Hossein Sid Kalal, The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids☆ International Communications in Heat and Mass Transfer. ,vol. 37, pp. 319- 323 ,(2010) , 10.1016/J.ICHEATMASSTRANSFER.2009.10.004