Image processing techniques for surface characterization of nanostructures

作者: Jisha John , M Wilscy

DOI: 10.1109/ICCPCT.2016.7530317

关键词:

摘要: The characterization of nanoscale images finds numerous applications in computer vision and image processing technologies. It is an emerging area research only few papers exist literature on techniques for analyzing properties nanostructures. nanostructures terms surface morphology, particle size, porosity measurement etc helps unique features the nanomaterials which makes them useful many applications. This paper reviews various algorithms their advantages drawbacks

参考文章(22)
Hae Yong Kim, Ricardo Hitoshi Maruta, Danilo Roque Huanca, Walter Jaimes Salcedo, Correlation-based multi-shape granulometry with application in porous silicon nanomaterial characterization Journal of Porous Materials. ,vol. 20, pp. 375- 385 ,(2013) , 10.1007/S10934-012-9607-9
Mark E. Davis, Ordered porous materials for emerging applications Nature. ,vol. 417, pp. 813- 821 ,(2002) , 10.1038/NATURE00785
Yuanxin Zhu, B. Carragher, F. Mouche, C.S. Potter, Automatic particle detection through efficient Hough transforms IEEE Transactions on Medical Imaging. ,vol. 22, pp. 1053- 1062 ,(2003) , 10.1109/TMI.2003.816947
Vincenzo Guarino, Angela Guaccio, Paolo A. Netti, Luigi Ambrosio, Image processing and fractal box counting: user-assisted method for multi-scale porous scaffold characterization Journal of Materials Science: Materials in Medicine. ,vol. 21, pp. 3109- 3118 ,(2010) , 10.1007/S10856-010-4163-9
William V. Nicholson, Robert M. Glaeser, Review: Automatic Particle Detection in Electron Microscopy Journal of Structural Biology. ,vol. 133, pp. 90- 101 ,(2001) , 10.1006/JSBI.2001.4348
M.J.J. Jak, C. Konstapel, A. van Kreuningen, J. Verhoeven, R. van Gastel, J.W.M. Frenken, Automated detection of particles, clusters and islands in scanning probe microscopy images Surface Science. ,vol. 494, pp. 43- 52 ,(2001) , 10.1016/S0039-6028(01)01487-X
Yong Xu, Hui Ji, Cornelia Fermüller, Viewpoint Invariant Texture Description Using Fractal Analysis International Journal of Computer Vision. ,vol. 83, pp. 85- 100 ,(2009) , 10.1007/S11263-009-0220-6