Selberg Zeta Function

作者: David Borthwick

DOI: 10.1007/978-3-319-33877-4_10

关键词:

摘要: For a geometrically finite hyperbolic surface X the Selberg zeta function Z (s) was introduced in §2.5. The is associated with length spectrum of (or, equivalently, to traces conjugacy classes Γ). We will see this chapter that it deserves be thought as spectral invariant well, by virtue beautiful correspondence between resonances and zeros (s).

参考文章(18)
David Fried, The zeta functions of Ruelle and Selberg. I Annales Scientifiques De L Ecole Normale Superieure. ,vol. 19, pp. 491- 517 ,(1986) , 10.24033/ASENS.1515
S.J. PATTERSON, The Selberg Zeta-Function of a Kleinian Group Number Theory, Trace Formulas and Discrete Groups#R##N#Symposium in Honor of Atle Selberg, Oslo, Norway, July 14–21, 1987. pp. 409- 441 ,(1989) , 10.1016/B978-0-12-067570-8.50031-7
Peter A. Perry, The Selberg zeta function and a local trace formula for Kleinian groups. Crelle's Journal. ,vol. 410, pp. 116- 152 ,(1990)
Ulrich Bunke, Martin Olbrich, Gamma cohomology and the Selberg zeta function Crelle's Journal. ,vol. 467, pp. 199- 219 ,(1994)
Rafe R Mazzeo, Richard B Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature Journal of Functional Analysis. ,vol. 75, pp. 260- 310 ,(1987) , 10.1016/0022-1236(87)90097-8
Laurent Guillope, Maciej Zworski, Scattering asymptotics for Riemann surfaces Annals of Mathematics. ,vol. 145, pp. 597- 660 ,(1997) , 10.2307/2951846
Isaac Efrat, Determinants of laplacians on surfaces of finite volume Communications in Mathematical Physics. ,vol. 119, pp. 443- 451 ,(1988) , 10.1007/BF01218082