Numerically induced chaos in the nonlinear Schrödinger equation.

作者: B. M. Herbst , Mark J. Ablowitz

DOI: 10.1103/PHYSREVLETT.62.2065

关键词:

摘要: The cubic nonlinear Schr\"odinger equation and some of its discretizations, one which is integ- rable, are studied. Apart from the integrable version discretizations produce chaotic solutions for intermediate levels mesh (mode) refinement. Chaos disappears when discretization fine enough convergence to a quasiperiodic solution obtained. Details given finite difference calculations, although similar results also obtained by Fourier spectral methods. Results regarding forced briefly described.

参考文章(16)
V. M. Kenkre, D. K. Campbell, Self-trapping on a dimer: Time-dependent solutions of a discrete nonlinear Schrödinger equation Physical Review B. ,vol. 34, pp. 4959- 4961 ,(1986) , 10.1103/PHYSREVB.34.4959
V. M. Kenkre, G. P. Tsironis, Nonlinear effects in quasielastic neutron scattering: Exact line-shape calculation for a dimer Physical Review B. ,vol. 35, pp. 1473- 1484 ,(1987) , 10.1103/PHYSREVB.35.1473
A.S. Davydov, The theory of contraction of proteins under their excitation Journal of Theoretical Biology. ,vol. 38, pp. 559- 569 ,(1973) , 10.1016/0022-5193(73)90256-7
A S Davydov, Solitons in quasi-one-dimensional molecular structures Physics-Uspekhi. ,vol. 25, pp. 898- 918 ,(1982) , 10.1070/PU1982V025N12ABEH005012
Yan-Chow Ma, Mark J. Ablowitz, The Periodic Cubic Schrõdinger Equation Studies in Applied Mathematics. ,vol. 65, pp. 113- 158 ,(1981) , 10.1002/SAPM1981652113
P. P. Kulish, Quantum difference nonlinear Schrödinger equation Letters in Mathematical Physics. ,vol. 5, pp. 191- 197 ,(1981) , 10.1007/BF00420698
M. J. Ablowitz, J. F. Ladik, A Nonlinear Difference Scheme and Inverse Scattering Studies in Applied Mathematics. ,vol. 55, pp. 213- 229 ,(1976) , 10.1002/SAPM1976553213
Thiab R Taha, Mark J Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical Journal of Computational Physics. ,vol. 55, pp. 192- 202 ,(1984) , 10.1016/0021-9991(84)90002-0
The Eckhaus and Benjamin-Feir resonance mechanisms Proc. R. Soc. Lond. A. ,vol. 362, pp. 27- 41 ,(1978) , 10.1098/RSPA.1978.0118
T. Brooke Benjamin, J. E. Feir, The disintegration of wave trains on deep water Part 1. Theory Journal of Fluid Mechanics. ,vol. 27, pp. 417- 430 ,(1967) , 10.1017/S002211206700045X