EigenNet: A Bayesian hybrid of generative and conditional models for sparse learning

作者: Feng Yan , Yuan Qi

DOI:

关键词:

摘要: For many real-world applications, we often need to select correlated variables— such as genetic variations and imaging features associated with Alzheimer's disease—in a high dimensional space. The correlation between variables presents challenge classical variable selection methods. To address this challenge, the elastic net has been developed successfully applied applications. Despite its great success, does not exploit information embedded in data variables. overcome limitation, present novel hybrid model, EigenNet, that uses eigenstructures of guide selection. Specifically, it integrates sparse conditional classification model generative capturing correlations principled Bayesian framework. We develop an efficient active-set algorithm estimate via evidence maximization. Experimental results on synthetic genetics demonstrate superior predictive performance EigenNet over lasso, net, automatic relevance determination.

参考文章(17)
Dominic Holland, James B Brewer, Donald J Hagler, Christine Fennema-Notestine, Anders M Dale, Alzheimer's Disease Neuroimaging Initiative, Michael Weiner, Leon Thal, Ronald Petersen, Clifford R Jack Jr, William Jagust, John Trojanowki, Arthur W Toga, Laurel Beckett, Robert C Green, Anthony Gamst, William Z Potter, Tom Montine, Dale Anders, Matthew Bernstein, Joel Felmlee, Nick Fox, Paul Thompson, Norbert Schuff, Gene Alexander, Dan Bandy, Robert A Koeppe, Norm Foster, Eric M Reiman, Kewei Chen, Les Shaw, Virginia M-Y Lee, Magdalena Korecka, Karen Crawford, Scott Neu, Danielle Harvey, John Kornak, Zaven Kachaturian, Richard Frank, Peter J Snyder, Susan Molchan, Jeffrey Kaye, Remi Vorobik, Joseph Quinn, Lon Schneider, Sonia Pawluczyk, Bryan Spann, Adam S Fleisher, Helen Vanderswag, Judith L Heidebrink, Joanne L Lord, Kris Johnson, Rachelle S Doody, Javier Villanueva-Meyer, Munir Chowdhury, Yaakov Stern, Lawrence S Honig, Karen L Bell, John C Morris, Mark A Mintun, Stacy Schneider, Daniel Marson, Randall Griffith, Beverly Badger, Hillel Grossman, Cheuk Tang, Jessica Stern, Leyla deToledo-Morrell, Raj C Shah, Julie Bach, Ranjan Duara, Richard Isaacson, Silvia Strauman, Marilyn S Albert, Julia Pedroso, Jaimie Toroney, Henry Rusinek, Mony J de Leon, Susan M De Santi, P Murali Doraiswamy, Jeffrey R Petrella, Marilyn Aiello, Christopher M Clark, Cassie Pham, Jessica Nunez, Charles D Smith, Curtis A Given, Peter Hardy, Steven T DeKosky, MaryAnn Oakley, Donna M Simpson, M Saleem Ismail, Anton Porsteinsson, Colleen McCallum, Steven C Cramer, Ruth A Mulnard, Catherine McAdams-Ortiz, Ramon Diaz-Arrastia, Kristen Martin-Cook, Michael DeVous, Allan I Levey, James J Lah, Janet S Cellar, Jeffrey M Burns, Heather S Anderson, Mary M Laubinger, George Bartzokis, Daniel HS Silverman, Po H Lu, Rita Fletcher, Francine Parfitt, Heather Johnson, Martin Farlow, Scott Herring, Ann M Hake, Christopher H van Dyck, Martha G MacAvoy, Laurel A Bifano, Howard Chertkow, Howard Bergman, Chris Hosein, Sandra Black, Simon Graham, Curtis Caldwell, Howard Feldman, Michele Assaly, Ging-Yuek R Hsiung, Andrew Kertesz, John Rogers, Dick Trost, Charles Bernick, Darren Gitelman, Nancy Johnson, Marsel Mesulam, Carl Sadowsky, Teresa Villena, Scott Mesner, Paul S Aisen, Kathleen B Johnson, Kelly E Behan, Reisa A Sperling, Dorene M Rentz, Keith A Johnson, Allyson Rosen, Jared Tinklenberg, Wes Ashford, Marwan Sabbagh, Donald Connor, Sanja Obradov, Ron Killiany, None, Subregional neuroanatomical change as a biomarker for Alzheimer's disease Proceedings of the National Academy of Sciences of the United States of America. ,vol. 106, pp. 20954- 20959 ,(2009) , 10.1073/PNAS.0906053106
Michael E. Tipping, Anita C. Faul, Fast Marginal Likelihood Maximisation for Sparse Bayesian Models. international conference on artificial intelligence and statistics. ,(2003)
Thomas P. Minka, Expectation propagation for approximate Bayesian inference uncertainty in artificial intelligence. pp. 362- 369 ,(2001)
Laurent Jacob, Guillaume Obozinski, Jean-Philippe Vert, Group lasso with overlap and graph lasso Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09. pp. 433- 440 ,(2009) , 10.1145/1553374.1553431
Trevor Park, George Casella, The Bayesian Lasso Journal of the American Statistical Association. ,vol. 103, pp. 681- 686 ,(2008) , 10.1198/016214508000000337
Qing Li, Nan Lin, The Bayesian elastic net Bayesian Analysis. ,vol. 5, pp. 151- 170 ,(2010) , 10.1214/10-BA506
Jianqing Fan, Runze Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties Journal of the American Statistical Association. ,vol. 96, pp. 1348- 1360 ,(2001) , 10.1198/016214501753382273
lldiko E. Frank, Jerome H. Friedman, A Statistical View of Some Chemometrics Regression Tools Technometrics. ,vol. 35, pp. 109- 135 ,(1993) , 10.1080/00401706.1993.10485033
Jennifer G. Dy, Yue Guan, Sparse Probabilistic Principal Component Analysis international conference on artificial intelligence and statistics. pp. 185- 192 ,(2009)
Hui Zou, Trevor Hastie, Regularization and variable selection via the elastic net Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 67, pp. 301- 320 ,(2005) , 10.1111/J.1467-9868.2005.00503.X