Fractal porous media IV: three-dimensional Stokes flow through random media and regular fractals.

作者: R. Lemaitre , P. M. Adler

DOI: 10.1007/BF01141990

关键词:

摘要: The three-dimensional Stokes flow of a Newtonian fluid through random and/or fractal media is numerically determined. permeability these derived. Results relative to structures are presented and discussed. validity the Carman equation simple scaling argument questioned.

参考文章(17)
John Happel, Howard Brenner, Low Reynolds number hydrodynamics ,(1965)
P. M. Adler, Transport processes in fractals. VI. Stokes flow through Sierpinski carpets Physics of Fluids. ,vol. 29, pp. 15- 22 ,(1986) , 10.1063/1.865971
J. Brickmann, B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. Berichte der Bunsengesellschaft für physikalische Chemie. ,vol. 89, pp. 209- 209 ,(1985) , 10.1002/BBPC.19850890223
A.S. Sangani, A. Acrivos, Slow flow through a periodic array of spheres International Journal of Multiphase Flow. ,vol. 8, pp. 343- 360 ,(1982) , 10.1016/0301-9322(82)90047-7
A. A. Zick, G. M. Homsy, Stokes flow through periodic arrays of spheres Journal of Fluid Mechanics. ,vol. 115, pp. 13- 26 ,(1982) , 10.1017/S0022112082000627
P.M. Adler, C.G. Jacquin, J.A. Quiblier, Flow in simulated porous media International Journal of Multiphase Flow. ,vol. 16, pp. 691- 712 ,(1990) , 10.1016/0301-9322(90)90025-E
Amnon Aharony, Dietrich Stauffer, Introduction to percolation theory ,(1985)
Benoit B. Mandelbrot, The Fractal Geometry of Nature ,(1982)
G. K. Batchelor, Sedimentation in a dilute dispersion of spheres Journal of Fluid Mechanics. ,vol. 52, pp. 245- 268 ,(1972) , 10.1017/S0022112072001399