Adapted game colouring of graphs

作者: H.A. Kierstead , Chung-Ying Yang , Daqing Yang , Xuding Zhu

DOI: 10.1016/J.EJC.2011.11.001

关键词:

摘要: Suppose G=(V,E) is a graph and F colouring of its edges (not necessarily proper) that uses the colour set X. In an adapted game, Alice Bob alternately uncoloured vertices G with colours from A partial c legal if there no edge e=xy such c(x)=c(y)=F(e). process each must be legal. If eventually all are coloured, then wins game. Otherwise, The game chromatic number G, denoted by @g"a"d"g(G), minimum needed to ensure for any has winning strategy This paper studies various classes graphs. We prove maximum trees 3, outerplanar graphs 5, k-trees at most 2k+1, planar 11.

参考文章(35)
M. Cochand, P. Duchet, A Few Remarks on Orientation of Graphs and Ramsey Theory Springer, Berlin, Heidelberg. pp. 39- 46 ,(1989) , 10.1007/978-3-642-61324-1_3
Walter Kern, H. Kierstead, W.T. Trotter, U. Faigle, On the game chromatic number of some classes of graphs Ars Combinatoria. ,vol. 35, pp. 143- 150 ,(1993)
Tomás Feder, Pavol Hell, Wing Xie, Matrix Partitions with Finitely Many Obstructions Electronic Journal of Combinatorics. ,vol. 14, pp. 58- ,(2007) , 10.37236/976
O.V. Borodin, On acyclic colorings of planar graphs Discrete Mathematics. ,vol. 306, pp. 953- 972 ,(2006) , 10.1016/J.DISC.2006.03.017
H. A. Kierstead, Daqing Yang, Orderings on graphs and game coloring number Order. ,vol. 20, pp. 255- 264 ,(2003) , 10.1023/B:ORDE.0000026489.93166.CB
Aaron F. Archer, On the upper chromatic numbers of the reals Discrete Mathematics. ,vol. 214, pp. 65- 75 ,(2000) , 10.1016/S0012-365X(99)00219-8
Jaroslav Nešetřil, Patrice Ossona de Mendez, Grad and classes with bounded expansion I. Decompositions The Journal of Combinatorics. ,vol. 29, pp. 760- 776 ,(2008) , 10.1016/J.EJC.2006.07.013
Pavol Hell, Xuding Zhu, On the adaptable chromatic number of graphs European Journal of Combinatorics. ,vol. 29, pp. 912- 921 ,(2008) , 10.1016/J.EJC.2007.11.015
G. R. Brightwell, Y. Kohayakawa, Ramsey properties of orientations of graphs Random Structures and Algorithms. ,vol. 4, pp. 413- 428 ,(1993) , 10.1002/RSA.3240040403
Game coloring the Cartesian product of graphs Journal of Graph Theory. ,vol. 59, pp. 261- 278 ,(2008) , 10.1002/JGT.V59:4