Flat vector bundles and analytic torsion forms

作者: Xiaonan Ma

DOI: 10.5802/TSG.316

关键词:

摘要: Assume temporarily that h is a flat metric on F . Let K be smooth triangulation of Z We can define the Reidemeistermetric ‖ λ(F ) ). It basic result Franz [13], Reidemeister [29], and de-Rham [30] (see also [25, §8]), does not depend The then topological invariant If H (Z,F = 0, it positive number, now called torsion (or Rtorsion).

参考文章(25)
Finn Knudsen, David Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div". Mathematica Scandinavica. ,vol. 39, pp. 19- 55 ,(1976) , 10.7146/MATH.SCAND.A-11642
Français Laudenbach, Jean-Michel Bismut, Weiping Zhang, An extension of a theorem by Cheeger and Müller Société mathématique de France. ,(1992)
Finn F. Knudsen, The projectivity of the moduli space of stable curves, II: The stacks $M_{g,n}$ Mathematica Scandinavica. ,vol. 52, pp. 161- 199 ,(1983) , 10.7146/MATH.SCAND.A-12001
Joseph Harris, Phillip A Griffiths, Principles of Algebraic Geometry ,(1978)
Jean-Michel Bismut, Sebastian Goette, Families Torsion and Morse Functions ,(2002)
John Lott, Secondary Analytic Indices Regulators in Analysis, Geometry and Number Theory. pp. 231- 293 ,(2000) , 10.1007/978-1-4612-1314-7_10
Wolfgang Lück, Thomas Schick, Thomas Thielmann, Torsion and fibrations arXiv: Differential Geometry. ,(1997) , 10.1515/CRLL.1998.050
Jean-Michel Bismut, Gilles Lebeau, Complex immersions and Quillen metrics Publications Mathématiques de l'IHÉS. ,vol. 74, pp. 1- 298 ,(1991) , 10.1007/BF02699352
Jean-Michel Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs Inventiones Mathematicae. ,vol. 83, pp. 91- 151 ,(1986) , 10.1007/BF01388755
U. Bunke, On the functoriality of Lott's secondary analytic index arXiv: Differential Geometry. ,(2000)