Schrödinger equation with time-dependent mass function and associated generalized KdV equation

作者: A Ganguly , A Das

DOI: 10.1088/0031-8949/90/5/055204

关键词:

摘要: We show that a time-dependent disturbance term could be embedded into Korteweg–de Vries (KdV) equation. This is accomplished through Lax pair formulation of linearized scattering problem corresponding to the Schrodinger A new generalized KdV equation obtained by considering mass function. Choosing initial data for stationary potential, we solve direct problem. Then, in inverse problem, Gel'fand–Levitan integral solved derive solution our Finally, an elliptic functional form chosen function obtain soliton solution.

参考文章(50)
Avinash Khare, Avadh Saxena, Linear superposition for a class of nonlinear equations Physics Letters A. ,vol. 377, pp. 2761- 2765 ,(2013) , 10.1016/J.PHYSLETA.2013.08.015
Ryogo Hirota, The Bäcklund and Inverse Scattering Transform of the K-dV Equation with Nonuniformities Journal of the Physical Society of Japan. ,vol. 46, pp. 1681- 1681 ,(1979) , 10.1143/JPSJ.46.1681
John D. Carter, Harvey Segur, Instabilities in the two-dimensional cubic nonlinear Schrödinger equation. Physical Review E. ,vol. 68, pp. 045601- ,(2003) , 10.1103/PHYSREVE.68.045601
Daisuke A. Takahashi, Shunji Tsuchiya, Ryosuke Yoshii, Muneto Nitta, Fermionic solutions of chiral Gross–Neveu and Bogoliubov–de Gennes systems in nonlinear Schrödinger hierarchy Physics Letters B. ,vol. 718, pp. 632- 637 ,(2012) , 10.1016/J.PHYSLETB.2012.10.058
M. Cabral, R. Rosa, Chaos for a damped and forced KdV equation Physica D: Nonlinear Phenomena. ,vol. 192, pp. 265- 278 ,(2004) , 10.1016/J.PHYSD.2004.01.023
Zhi‐xiong Chen, (Pen‐yu Ben‐yuKuo) Guo, Long‐wan Xiang, Complete integrability and analytic solutions of a KdV‐type equation Journal of Mathematical Physics. ,vol. 31, pp. 2851- 2855 ,(1990) , 10.1063/1.528936
E Ott, RN Sudan, Damping of Solitary Waves Physics of Fluids. ,vol. 13, pp. 1432- 1434 ,(1970) , 10.1063/1.1693097
Leonid Berezansky, Elena Braverman, Stability of equations with a distributed delay, monotone production and nonlinear mortality Nonlinearity. ,vol. 26, pp. 2833- 2849 ,(2013) , 10.1088/0951-7715/26/10/2833
B. Straughan, Gene–culture shock waves Physics Letters A. ,vol. 377, pp. 2531- 2534 ,(2013) , 10.1016/J.PHYSLETA.2013.07.025