Existence, uniqueness, and quasilinearization results for nonlinear differential equations arising in viscoelastic fluid flow

作者: F. Talay Akyildiz , K. Vajravelu

DOI: 10.1155/DENM/2006/71717

关键词:

摘要: Solutions for a class of nonlinear second-order differential equations arising in steady Poiseuille flow an Oldroyd six-constant model are obtained using the quasilinearization technique. Existence, uniqueness, and analyticity results are established Schauder theory. Numerical results are presented graphically salient features solutions are discussed.

参考文章(9)
J. F. Hutton, Kenneth Walters, Howard A. Barnes, An Introduction To Rheology ,(1989)
Y. Wang, T. Hayat, K. Hutter, On non-linear magnetohydrodynamic problems of an Oldroyd 6-constant fluid International Journal of Non-linear Mechanics. ,vol. 40, pp. 49- 58 ,(2005) , 10.1016/J.IJNONLINMEC.2004.05.010
On the Formulation of Rheological Equations of State Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 200, pp. 523- 541 ,(1950) , 10.1098/RSPA.1950.0035
Richard Ernest Bellman, Robert E. Kalaba, Quasilinearization and nonlinear boundary-value problems ,(1965)
K. R. Rajagopal, R. K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid Acta Mechanica. ,vol. 113, pp. 233- 239 ,(1995) , 10.1007/BF01212645
Kumbakonam R Rajagopal, Mechanics of non-Newtonian fluids ,(1978)
C Truesdell, W Noll, AC Pipkin, The non-linear field theories of mechanics ,(1992)