A Quantum Model for Autonomous Learning Automata

作者: Michael Siomau

DOI: 10.1007/S11128-013-0723-5

关键词:

摘要: The idea of information encoding on quantum bearers and its quantum-mechanical processing has revolutionized our world brought mankind the verge enigmatic era technologies. Inspired by this idea, in present paper we search for advantages field machine learning. Exploiting only basic properties Hilbert space, superposition principle mechanics measurements, construct a analog Rosenblatt's perceptron, which is simplest learning machine. We demonstrate that perceptron superiors classical counterpart capabilities. In particular, show able to learn an arbitrary (Boolean) logical function, perform classification previously unseen classes even recognize superpositions learned -- task high importance applied medical engineering.

参考文章(13)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Carlo J. De Luca, Control of upper-limb prostheses: a case for neuroelectric control. Journal of Medical Engineering & Technology. ,vol. 2, pp. 57- 61 ,(1978) , 10.3109/03091907809161756
Marvin Lee Minsky, Seymour Papert, Perceptrons: An Introduction to Computational Geometry ,(1969)
Stuart J. Russell, Peter Norvig, Artificial Intelligence: A Modern Approach ,(2020)
I. M. Georgescu, S. Ashhab, Franco Nori, Quantum Simulation Reviews of Modern Physics. ,(2013) , 10.1103/REVMODPHYS.86.153
Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, Hugo Zbinden, Quantum Cryptography Reviews of Modern Physics. ,(2001) , 10.1103/REVMODPHYS.74.145
V. Vedral, The role of relative entropy in quantum information theory Reviews of Modern Physics. ,vol. 74, pp. 197- 234 ,(2002) , 10.1103/REVMODPHYS.74.197
Andrew M. Childs, Wim van Dam, Quantum algorithms for algebraic problems Reviews of Modern Physics. ,vol. 82, pp. 1- 52 ,(2010) , 10.1103/REVMODPHYS.82.1
M. ANDRECUT, M. K. ALI, A QUANTUM PERCEPTRON International Journal of Modern Physics B. ,vol. 16, pp. 639- 645 ,(2002) , 10.1142/S0217979202009998
Noriaki Kouda, Nobuyuki Matsui, Haruhiko Nishimura, Ferdinand Peper, Qubit neural network and its learning efficiency Neural Computing and Applications. ,vol. 14, pp. 114- 121 ,(2005) , 10.1007/S00521-004-0446-8