AFLOW-ML: A RESTful API for machine-learning predictions of materials properties

作者: Alexander Tropsha , Stefano Curtarolo , Stefano Curtarolo , Fleur Legrain , Natalio Mingo

DOI:

关键词:

摘要: Machine learning approaches, enabled by the emergence of comprehensive databases materials properties, are becoming a fruitful direction for analysis. As result, plethora models have been constructed and trained on existing data to predict properties new systems. These powerful methods allow researchers target studies only at interesting $\unicode{x2014}$ neglecting non-synthesizable systems those without desired thus reducing amount resources spent expensive computations and/or time-consuming experimental synthesis. However, using these predictive is not always straightforward. Often, they require panoply technical expertise, creating barriers general users. AFLOW-ML (AFLOW $\underline{\mathrm{M}}$achine $\underline{\mathrm{L}}$earning) overcomes problem streamlining use machine developed within AFLOW consortium. The framework provides an open RESTful API directly access continuously updated algorithms, which can be transparently integrated into any workflow retrieve predictions electronic, thermal mechanical properties. types interconnected cloud-based applications envisioned capable further accelerating adoption development.

参考文章(31)
Camilo E Calderon, Jose J Plata, Cormac Toher, Corey Oses, Ohad Levy, Marco Fornari, Amir Natan, Michael J Mehl, Gus Hart, Marco Buongiorno Nardelli, Stefano Curtarolo, None, The AFLOW standard for high-throughput materials science calculations Computational Materials Science. ,vol. 108, pp. 233- 238 ,(2015) , 10.1016/J.COMMATSCI.2015.07.019
Jerome H. Friedman, Greedy function approximation: A gradient boosting machine. Annals of Statistics. ,vol. 29, pp. 1189- 1232 ,(2001) , 10.1214/AOS/1013203451
Olexandr Isayev, Denis Fourches, Eugene N Muratov, Corey Oses, Kevin Rasch, Alexander Tropsha, Stefano Curtarolo, None, Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints Chemistry of Materials. ,vol. 27, pp. 735- 743 ,(2015) , 10.1021/CM503507H
Cormac Toher, Jose J. Plata, Ohad Levy, Maarten de Jong, Mark Asta, Marco Buongiorno Nardelli, Stefano Curtarolo, High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model Physical Review B. ,vol. 90, pp. 174107- ,(2014) , 10.1103/PHYSREVB.90.174107
James E. Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, C. Wolverton, Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) JOM. ,vol. 65, pp. 1501- 1509 ,(2013) , 10.1007/S11837-013-0755-4
Geoffroy Hautier, Christopher C. Fischer, Anubhav Jain, Tim Mueller, Gerbrand Ceder, Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory Chemistry of Materials. ,vol. 22, pp. 3762- 3767 ,(2010) , 10.1021/CM100795D
Fiorella Ruggiu, Gilles Marcou, Alexandre Varnek, Dragos Horvath, ISIDA Property‐Labelled Fragment Descriptors Molecular Informatics. ,vol. 29, pp. 855- 868 ,(2010) , 10.1002/MINF.201000099
Ohad Levy, Gus LW Hart, Stefano Curtarolo, None, Uncovering compounds by synergy of cluster expansion and high-throughput methods. Journal of the American Chemical Society. ,vol. 132, pp. 4830- 4833 ,(2010) , 10.1021/JA9105623
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B. ,vol. 47, pp. 558- 561 ,(1993) , 10.1103/PHYSREVB.47.558
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B. ,vol. 54, pp. 11169- 11186 ,(1996) , 10.1103/PHYSREVB.54.11169