Non-Darcy flow models in porous media via Atangana-Baleanu derivative

作者: Qing Wei , Hongwei Zhou , Shuai Yang

DOI: 10.1016/J.CHAOS.2020.110335

关键词:

摘要: Abstract Two fractional Swartzendruber models applying the Atangana-Baleanu (A-B) derivative are proposed to describe non-Darcy flow in porous media. The analytical solutions of obtained by using Laplace transform. Fitting curves with experimental data display suitable problems low and high permeability In addition, sensitivity analysis is performed clarify influence relevant parameters on A-B models. light two-scale thermodynamics, physical explanations model I II revealed. connect fluid different scales, provide a unified description media permeability.

参考文章(34)
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)
Guy Jumarie, Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution Journal of Applied Mathematics and Computing. ,vol. 24, pp. 31- 48 ,(2007) , 10.1007/BF02832299
H.W. Zhou, C.P. Wang, B.B. Han, Z.Q. Duan, A creep constitutive model for salt rock based on fractional derivatives International Journal of Rock Mechanics and Mining Sciences. ,vol. 48, pp. 116- 121 ,(2011) , 10.1016/J.IJRMMS.2010.11.004
DALE SWARTZENDRUBER, Modification of DARCYʼS Law for the Flow of Water in Soils Soil Science. ,vol. 93, pp. 22- 29 ,(1962) , 10.1097/00010694-196201000-00005
Michele Caputo, Wolfango Plastino, Diffusion in porous layers with memory Geophysical Journal International. ,vol. 158, pp. 385- 396 ,(2004) , 10.1111/J.1365-246X.2004.02290.X
Abdon Atangana, Ilknur Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order Chaos Solitons & Fractals. ,vol. 89, pp. 447- 454 ,(2016) , 10.1016/J.CHAOS.2016.02.012
Y. Wang, X. Li, B. Zheng, Y. X. Zhang, G. F. Li, Y. F. Wu, Experimental study on the non-Darcy flow characteristics of soil–rock mixture Environmental Earth Sciences. ,vol. 75, pp. 1- 18 ,(2016) , 10.1007/S12665-015-5218-5
Mauro Fabrizio, Michele Caputo, A new Definition of Fractional Derivative without Singular Kernel Progress in Fractional Differentiation & Applications. ,vol. 1, pp. 73- 85 ,(2015)
Nadeem Ahmad Sheikh, Farhad Ali, Muhammad Saqib, Ilyas Khan, Syed Aftab Alam Jan, Ali Saleh Alshomrani, Metib Said Alghamdi, None, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction Results in physics. ,vol. 7, pp. 789- 800 ,(2017) , 10.1016/J.RINP.2017.01.025