Testing symmetry about an unknown median, via linear rank procedures

作者: R. L. Eubank , V. N. lariccia , R. B. rosenstein

DOI: 10.1080/10485259208832532

关键词:

摘要: The properties of several linear rank statistics for testing the hypothesis that a random variable with unknown median has symmetric distribution, are explored. Each test is related, in natural way, to type estimator median. Specifically, tests based on swre functions which third element complete orthonormal basis L 2[O,1] and estimated by associated R-estimator. It shown linking score function this fashion resulting have simple asymptotic distribution under both null sequences local alternatives. Based theory, small sample modifications presented. n, even when approximate critical values used, these maintain stable a-level, close nominal level, over wide range distributions. Also respect power, competitive existing proc...

参考文章(20)
Husˇkova´ Marie, Kumar Sen Pranab, On sequentially adaptive asymptotically efficient rank statistics Sequential Analysis. ,vol. 4, pp. 125- 151 ,(1985) , 10.1080/07474948508836076
James C. Aubuchon, Thomas P. Hettmansperger, 12 On the use of rank tests and estimates in the linear model Handbook of Statistics. ,vol. 4, pp. 259- 274 ,(1984) , 10.1016/S0169-7161(84)04014-1
Stephen J. Finch, Robust Univariate Test of Symmetry Journal of the American Statistical Association. ,vol. 72, pp. 387- 392 ,(1977) , 10.1080/01621459.1977.10481006
Dennis D. Boos, A Test for Asymmetry Associated with the Hodges-Lehmann Estimator Journal of the American Statistical Association. ,vol. 77, pp. 647- 651 ,(1982) , 10.1080/01621459.1982.10477864
Rebecca B. Rosenstein, Tests of symmetry derived as components of pearson's phi-squared distance measure Communications in Statistics-theory and Methods. ,vol. 18, pp. 1617- 1626 ,(1989) , 10.1080/03610928908829989
FLORENCE N. DAVID, N. L. JOHNSON, A TEST FOR SKEWNESS WITH ORDERED VARIABLES Annals of Human Genetics. ,vol. 17, pp. 351- 353 ,(1952) , 10.1111/J.1469-1809.1952.TB02529.X
Schuster Eugene F, Richard C Barker, Using the bootstrap in testing symmetry versus asymmetry Communications in Statistics - Simulation and Computation. ,vol. 16, pp. 69- 84 ,(1987) , 10.1080/03610918708812578
Ronald H. Randles, Michael A. Fligner, George E. Policello, Douglas A. Wolfe, An Asymptotically Distribution-Free Test for Symmetry versus Asymmetry Journal of the American Statistical Association. ,vol. 75, pp. 168- 172 ,(1980) , 10.1080/01621459.1980.10477448
WILLIAM R. SCHUCANY, SIMON J. SHEATHER, Jackknifing R-estimators Biometrika. ,vol. 76, pp. 393- 398 ,(1989) , 10.1093/BIOMET/76.2.393
Pranab Kumar Sen, Tied-Down Wiener Process Approximations for Aligned Rank Order Processes and Some Applications The Annals of Statistics. ,vol. 5, pp. 1107- 1123 ,(1977) , 10.1214/AOS/1176343999