Hyers-Ulam-Rassias stability of Jensen's equation and its application

作者: Soon-Mo Jung

DOI: 10.1090/S0002-9939-98-04680-2

关键词:

摘要: The Hyers-Ulam-Rassias stability for the Jensen functional equation is investigated, and the result is applied to the study of an asymptotic behavior of the additive mappings; more precisely, the following asymptotic property shall be proved: Let $ X $ and $ Y $ be a real normed space and a real Banach space, respectively. A mapping $ f: X\rightarrow Y $ satisfying $ f (0)= 0$ is additive if and only if $\left\| 2f\left [(x+ y)/2\right]-f (x)-f (y)\right\|\rightarrow 0$ as $\| x\|+\| y\|\rightarrow\infty $. References

参考文章(8)
Stanislaw M. Ulam, Problems in modern mathematics ,(1964)
Donald H. Hyers, George Isac, Themistocles M. Rassias, Stability of functional equations in several variables ,(1998)
Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces Proceedings of the American Mathematical Society. ,vol. 72, pp. 297- 300 ,(1978) , 10.1090/S0002-9939-1978-0507327-1
J. C. Parnami, H. L. Vasudeva, On Jensen's functional equation Aequationes Mathematicae. ,vol. 43, pp. 115- 115 ,(1992) , 10.1007/BF01835703
Gian Luigi Forti, Hyers-Ulam stability of functional equations in several variables Aequationes Mathematicae. ,vol. 50, pp. 143- 190 ,(1995) , 10.1007/BF01831117
Themistocles M. Rassias, Peter Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability Proceedings of the American Mathematical Society. ,vol. 114, pp. 989- 993 ,(1992) , 10.1090/S0002-9939-1992-1059634-1
D. H. Hyers, On the Stability of the Linear Functional Equation Proceedings of the National Academy of Sciences of the United States of America. ,vol. 27, pp. 222- 224 ,(1941) , 10.1073/PNAS.27.4.222
Zygíryd Kominek, On a Local Stability of the Jensen Functional Equation Demonstratio Mathematica. ,vol. 22, ,(1989) , 10.1515/DEMA-1989-0220