Non-perturbative hydrodynamic limits: A case study

作者: I.V. Karlin , S.S. Chikatamarla , M. Kooshkbaghi

DOI: 10.1016/J.PHYSA.2014.02.018

关键词:

摘要: Abstract We introduce non-perturbative analytical techniques for the derivation of hydrodynamic manifolds from kinetic equations. The new approach is analogous to Schwinger–Dyson equation quantum field theories, and its demonstrated with construction exact diffusion manifold a model equation.

参考文章(9)
T. G. Cowling, Sydney Chapman, David Park, The mathematical theory of non-uniform gases ,(1939)
Marshall Slemrod, Chapman-Enskog ⇒ viscosity-capillarity Quarterly of Applied Mathematics. ,vol. 70, pp. 613- 624 ,(2012) , 10.1090/S0033-569X-2012-01305-1
S. Succi, H. Chen, S. Orszag, Relaxation approximations and kinetic models of fluid turbulence Physica A-statistical Mechanics and Its Applications. ,vol. 362, pp. 1- 5 ,(2006) , 10.1016/J.PHYSA.2005.09.026
Jonas Lätt, Bastien Chopard, Sauro Succi, Federico Toschi, Numerical analysis of the averaged flow field in a turbulent lattice Boltzmann simulation Physica A-statistical Mechanics and Its Applications. ,vol. 362, pp. 6- 10 ,(2006) , 10.1016/J.PHYSA.2005.09.016
J. Schwinger, On the Green’s functions of quantized fields. I Proceedings of the National Academy of Sciences of the United States of America. ,vol. 37, pp. 452- 455 ,(1951) , 10.1073/PNAS.37.7.452
F. J. Dyson, The S Matrix in Quantum Electrodynamics Physical Review. ,vol. 75, pp. 1736- 1755 ,(1949) , 10.1103/PHYSREV.75.1736