Influence of Covalency upon Rare-Earth Ligand Field Splittings

作者: J. D. Axe , Gerald Burns

DOI: 10.1103/PHYSREV.152.331

关键词:

摘要: Experimental results for the shift with uniaxial stress of $(^{2}F_{\frac{5}{2}},{\ensuremath{\Gamma}}_{7})\ensuremath{\rightarrow}(^{2}F_{\frac{7}{2}},{\ensuremath{\Gamma}}_{7})$ laser transition in ${\mathrm{Tm}}^{2+}$:Ca${\mathrm{F}}_{2}$ and ${\mathrm{Tm}}^{2+}$:Sr${\mathrm{F}}_{2}$ are presented. The results, 1.75 ${\mathrm{cm}}^{\ensuremath{-}1}$${(\mathrm{d}\mathrm{y}\mathrm{n}/{\mathrm{cm}}^{2})}^{\ensuremath{-}1}$ 1.78 ${\mathrm{cm}}^{\ensuremath{-}1}$${(\mathrm{d}\mathrm{y}\mathrm{n}/{\mathrm{cm}}^{2})}^{\ensuremath{-}1}$, used to calculate radial dependence cubic ligand field splitting. resulting is somewhat larger than that predicted by familiar electrostatic model Partially determine its influence on above result, we have considered effect covalency means a semiempirical molecular-orbital model. overlap $4f$ orbitals neighboring fluoride ions was calculated using Hartree-Fock wave functions known internuclear distances. off-diagonal elements interaction Hamiltonian were obtained from Wolfsberg-Helmholz approximation ${H}_{\mathrm{ij}}=\frac{2{S}_{\mathrm{ij}}({H}_{\mathrm{ii}}+{H}_{\mathrm{jj}})}{2}$. A range reasonable values diagonal analogy those necessary explain iron-series splittings. largest group function ${\mathrm{F}}^{1\ensuremath{-}}$ ligands found be 3.6% leads sizable (our best estimate Ca${\mathrm{F}}_{2}$ 50%) covalent contribution We also investigated some consequences this magnitude. part energy greater part. thus better agreement experiment. Transferred hyperfine effects compared experiment, but extent hard ascertain because uncertainty sign experimental quantity polarization effects. orbital reduction factor much smaller observed. expected variation ${(\mathrm{rare}\mathrm{earth})}^{3+}\ensuremath{-}{F}^{1\ensuremath{-}}$ as atomic number.

参考文章(38)
Clyde A. Hutchison, Eugene Wong, Paramagnetic Resonance in Rare Earth Trichlorides Journal of Chemical Physics. ,vol. 29, pp. 754- 760 ,(1958) , 10.1063/1.1744587
Eugene Y. Wong, Isaac Richman, Absorption and Fluorescence Spectra of Pr3+ in LaBr3 Journal of Chemical Physics. ,vol. 36, pp. 1889- 1892 ,(1962) , 10.1063/1.1701285
Gerald Burns, Shielding and Crystal Fields at Rare-Earth Ions Physical Review. ,vol. 128, pp. 2121- 2130 ,(1962) , 10.1103/PHYSREV.128.2121
Carl J. Lenander, Eugene Y. Wong, Crystal‐Field Shielding in PrCl3 The Journal of Chemical Physics. ,vol. 38, pp. 2750- 2752 ,(1963) , 10.1063/1.1733584
R. E. Watson, A. J. Freeman, Shielding and distortion of rare-earth crystal-field spectra Physical Review. ,vol. 133, pp. 1571- 1584 ,(1964) , 10.1103/PHYSREV.133.A1571
Gerald Burns, Crystal Fields at Rare-Earth Ions Journal of Chemical Physics. ,vol. 42, pp. 377- 390 ,(1965) , 10.1063/1.1695703
J M Baker, J P Hurrell, Fluorine Electron Nuclear Double Resonance (ENDOR) in Calcium Fluoride Proceedings of the Physical Society. ,vol. 82, pp. 742- 756 ,(1963) , 10.1088/0370-1328/82/5/312
Chr. Klixbüll Jo/rgensen, Romano Pappalardo, Hans‐Herbert Schmidtke, Do the ``Ligand Field'' Parameters in Lanthanides Represent Weak Covalent Bonding? The Journal of Chemical Physics. ,vol. 39, pp. 1422- 1430 ,(1963) , 10.1063/1.1734458